

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-13/0019 of 03/11/2015

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:	ROCKPANEL PLY 6 mm, 8 mm and 10 mm supplied with a primer coating. The top(colour) coat can be site applied or in a paint shop
Product family to which the above construction product belongs:	Prefabricated mineral wool boards with organic or inorganic finish and with specified fastening system
Manufacturer: Manufacturing plant:	ROCKWOOL B.V. Konstruktieweg 2 NL-6045 JD Roermond Tel. +31 475 353 000 Fax +31 475 353 550 ROCKWOOL B.V. / ROCKPANEL Group Konstruktieweg 2 NL-6045 JD Roermond
This European Technical Assessment contains:	25 pages including 6 annexes which form an integral part of the document
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of:	European Assessment Document (EAD) no. EAD 090001-00-0404 for Prefabricated compressed mineral wool boards with organic or inorganic finish and with specified fastening system, edition May 2015.
This version replaces:	The previous ETA with the same number and validity from 2013-03-13 to 2018-03-13

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

Technical description of the product General

ROCKPANEL PLY 6, 8 and 10 mm with primer finish are made from prefabricated mineral wool boards with thermo-setting synthetic binders. The top (colour) coat can be site applied or in a paint shop. The boards are fastened to timber subframes. Fastening to the timber subframe is carried out with corrosion resistant nails or screws. Mechanical fasteners, gaskets, and aluminum profiles are specified by the ETA-holder.

The ROCKPANEL PLY panels are surface treated with a four-layer water-borne polymer emulsion primer on one side, in a grey colour.

The physical properties of the panels are indicated in Table 1.

Table 1

Property	Value	
Thickness and tolerances	$6 \pm 0.3 \text{ mm} / 8 \pm 0.5 \text{ mm}$	
	$/ 10 \pm 0.5 \text{ mm}$	
Length, max	3050 mm	
Width, max	1250 mm	
Density, nominal and	$1000 \text{ kg/m}^3 - 100 / +150$	
tolerances		
Bending strength, length and	$f_{05} \! \geq \! 15 \ N/mm^2$	
width		
Modulus of elasticity	$m(E) \geq 3065 \ N/mm^2$	
Cumulative dimensional	Length / Width: $\leq 0,067$	
change % according to EN		
438-2		
Thermal conductivity	0,35 W/(m • K)	
Coefficient of thermal	α = 9,7 \times 10 $^{-3}$ (10 $^{-6}$ K $^{-}$	
expansion, length and width	1)	
Coefficient of moisture	\leq 0,241 mm/m after 4	
expansion 23° C/50% RH to	days	
92% RH		

Finish

The finish consists of a light grey primer for painting on the building site or in a paint shop.

Subframes

The panels are attached to the building by fixing to a subframe of wood.

The vertical battens should have a minimum thickness of 28 mm (solid wood).

Also LVL battens (Laminated Veneer Lumber) with a minimum thickness of 27 mm, according to EN 14374,

can be used (Ultralam R, CE 0672-CPD-I)

Appropriate preservative treatment of subframes

Use the appropriate part of EN 335 to identify the "use class" of a given service environment and geographical location. Table 1 in EN 335 will assist in determining the biological agents that can attack timber in certain situations. The user can then consider the type and duration of performance required select an appropriate level of durability and ensure that the timber or wood-based product specified has either, as a natural (see EN 350-2) or an acquired characteristic durability as the result of appropriate preservative treatment (see EN 351-1).

Joints

Aluminum profiles

The horizontal joints between the panels can be open in the case of ROCKPANEL strips or EPDM foam gasket. The strips or gasket are 15 mm wider than the batten at both sides.

The horizontal joints between the panels are made with a ROCKPANEL "A" extruded aluminum chair profile or equivalent in the case of panels mechanically fixed on timber battens. The chair profile has an overlap of at least 15 mm on the board above the profile.

See section 3, Figure 2.

Foam gasket

A 3 mm thick EPDM foam gasket (self-adhering backside) is fixed to the timber battens. If the horizontal joint is closed with an aluminum chair profile, the vertical joint is backed with the 60 mm wide gasket and for the intermediate battens the 36 mm gasket is used.

In the case of open horizontal joints the width of the gasket 15 mm at both sides wider than the batten.

Fasteners

The panels are mechanically fixed to vertical timber subframe.

The mechanical fastening to timber battens is carried out with either ROCKPANEL stainless steel screws $4,5 \times 35$ mm no 1.4401 or 1.4578 (EN 10088) or ROCKPANEL ring shank nails 2,7/2,9 x 32 mm or 40 mm no 1.4401 or 1.4578 (EN 10088).

The maximum fixing distances and edge distances appear from Table 11, the hole diameter from Table 10, design load and characteristic load appears from annex A and B of the ETA.

The installation method with the use of fixed points and moving points appears from Figure 1.

2 Specification of the intended use in accordance with the applicable EAD

The boards are intended for external cladding according to Figure 2 and for fascias and soffits. The cladding on vertical timber battens with mechanically fixed boards can be carried out with or without ventilated cavities at the back. See section 3, Figure 2

The provisions made in this European Technical Assessment are based on an assumed intended working life of the kit of 50 years, provided that they are subject to appropriate use and maintenance.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

	Characteristic	Assessment of characteristic	
3.2	Safety in case of fire (BWR 2)		
	eaction to fire of the board in its intended se as a cladding kit		
		The aluminum profiles are classified as Euroclass A1	
Classification of panels: See Table 2		Classification of panels: See Table 2	

The panels have been classified in accordance with EN 13501-1 with the following parameters:

Table 2. Euroclass classification of different constructions with ROCKPANEL boards					
Fixing method	Ventilated or non-ventilated	Vertical wooden subframe PLY in the thicknesses			
		6 mm	8 mm	10 mm	
	Non-ventilated. Cavity filled with mineral wool		2, d0 horizontal joint		
Mechanically fixed	Ventilated with EPDM gasket on the battens [a]		B-s2, d0 open 6 mm horizontal je		
	Ventilated with 6 mm ROCKPANEL PLY strips on the battens [b]	B-s2, d0 open 6 mm horizontal joint			

[a] width of the gasket 15 mm at both sides wider than the batten

[b] width of the strip 15 mm at both sides wider than the batten

Field of application

Further to the limitations described in section 1 of the ETA, the following field of application applies.

Euroclass classification

The classification mentioned in Table 2 is valid for the following end use conditions:

Mounting:

- Mechanically fixed to a wooden subframe
- The panels are backed with min. 50 mm mineral wool insulation with density 30-70 kg/m³ according to EN 13162 with a cavity between the panels and the insulation (mechanically fixed)
- The boards are backed with min. 40 mm mineral wool insulation with density 30-70 kg/m³ according to EN 13162 without a cavity between the back of the board and the insulation behind the subframe (mechanically fixed non ventilated)

Substrates:

• Concrete walls, masonry walls

Insulation:

- Ventilated constructions: The battens are backed with min. 50 mm mineral wool insulation with density 30-70 kg/m³ according to EN 13162 with a cavity of min. 28 mm between the panels and the insulation
- Non-ventilated constructions: The panels are backed with min. 40 mm mineral wool with density 30-70 kg/m³ according to EN 13162 between the battens and min. 50 mm with density 30-70 kg/m³ behind the battens without a cavity
- Results are also valid for all greater thickness of mineral wool insulation layer with the same density and the same or better reaction to fire classification
- The test result of a test with mineral wool insulation shall be valid, without test, for the same type of panel used without insulation, if the substrate chosen according to EN 13238 is made of panel with Euro-class A1 or A2 (e.g. fibres-cement panel).

Subframe:

- Vertical softwood battens without fire retardant treatment, thickness minimum 28 mm
- Test results are also valid for the same type of panel with aluminum or steel frame
- Test results are also valid for the same type of panel with vertical LVL battens, without fire retardant treatment, thickness minimum 27 mm

Fixings:

- Results are also valid with higher density of the fixing devices
- Test results are also valid for the same type of panel fixed by rivets made of the same material of screws and vice versa

Cavity:

- Unfilled or filled with insulation of stone wool with a nominal density of 30-70 kg/m³
- The depth of the cavity is minimum 28 mm
- Test results are also valid for other higher thickness of air space between the back of the board and the insulation behind the subframe

Joints:

- Vertical joints are with an EPDM foam gasket backing or ROCKPANEL strip backing as described in table 2 and horizontal joints can be open (ventilated constructions) or with an aluminum profile (ventilated and non-ventilated constructions)
- Test results are also valid for higher thicknesses of ROCKPANEL strips
- Test results are also valid in the case of using ROCKPANEL strips instead of EPDM foam gaskets
- The result from a test with an open horizontal joint is also valid for the same type of panel used in applications with horizontal joints closed by steel or aluminum profiles

The classification is also valid for the following product parameters:

Thickness:

- Nominal 6 mm, individual tolerances ± 0.3 mm
- Nominal 8 mm, individual tolerances ± 0.5 mm
- Nominal 10 mm, individual tolerances \pm 0,5 mm

Density

• Nominal 1000 kg/m³, individual tolerances -100 / +150 kg/m³

Charac	teristic	Assessment of characteristic
3.3	Hygiene, health and the environment (BW	(R 3)
	ntent, emission and/or release of agerous substances	
		Use category: Outdoor S/W2 The kit does not contain/release dangerous substances specified in TR 034, dated April 2013*), except Formaldehyde concentration 0,0105 mg/m ³ Formaldehyde class E1
		The used fibres are not potential carcinogenic No biocides are used in the ROCKPANEL boards No flame retardant is used in the boards No cadmium is used in the boards
Wat	ter vapour permeability	
		s_d declared : \leq 1,2 m at 23° C and 85% RH
		The designer shall consider the relevant needs for ventilation heating and insulation to minimise condensation in service.
Wat	ter tightness of joints	
		No performance determined
Dra	inability	See section 'Aspects related to the performance of the product'
	Safety and accessibility in use (BWR 4)	
Win	nd load resistance	See section 1, Table 1
	Mechanical properties of panels Design value of axial loads	See section 1, 1able 1
L	In absence of national regulations the de	sign values X_d may be calculated as indicated in the ETA (see ow is mentioned the safety factor which has been used in the
	Fixing position and design value X_d of the axial load M/E/C (Middle/Edge/Corner) of mechanical fixings corresponding to the wind load resistance (load acting perpendicular to the façade) <i>Remark:</i> Design value X_d obtained by dividing the characteristic value X_k by a partial factor $\gamma_M : X_d = X_k / \gamma_M$ The design value X_d of a material property can be expressed in general terms as $X_d = \eta \times X_k / \gamma_m$;	ROCKPANEL screws: Fastener specification according to Table 4. Design value X_d depends on the modification factor k_{mod} , the strength class of the wood and the different material factors γ_M . Annex A1, A2, A3 and A4, row (24), (25) and (26) contain the design value of the axial load $X_d = X_k / \gamma_M$ for the different fixing locations and board thicknesses. Tables include wind suction results according to "Wind suction and pressure resistance" ROCKPANEL nails: Fastener specification according to Table 3. Design value X_d depends on the modification factor k_{mod} , the strength class of the wood and the different material factors γ_M . Annex B1, B2, B3 and B4, row (24), (25) and (26) contain the

haracteristic	Assessment of characteristic
Pull/out and pull/through resistanc	e of fasteners and mechanical resistance of boards
Pull-out resistance of fasteners	ROCKPANEL screws: Fastener specification according to Table 4. Annex A1, A2, A3 and A4 row (14) and (15) contain the characteristic withdrawal capacity F_{ax} for both strength classes C18 and C24 according to EN 338. Design value X_d depends on the modification factor k_{mod} , the strength class of the wood and the material factor γ_M . Row (22) and (23) contain the design value X_d of the axial
	withdrawal capacity for both strength classes C18 and C24. ROCKPANEL nails: Fastener specification according to Table 3 Annex B1, B2, B3 and B4 row (14) and (15) contain the characteristic withdrawal capacity F_{ax} for both strength classes C18 and C24 according to EN 338. Design value X_d depends on the modification factor k_{mod} , the strength class of the wood and the material factor γ_M . Row (22) and (23) contain the design value X_d of the axial
Pull-through resistance of boards	 ROCKPANEL screws: Fastener specification according to Table 4. Annex A1, A2, A3 and A4, row (4) contain the characteristic pull-through for three different fixing locations. Row (6) contains the design value of the pull-through resistance for
	 ROCKPANEL nails: Fastener specification according to Table 3 Annex B1, B2, B3 and B4, row (4) contain the characteristic pull-through for three different fixing locations. Row (6) contains the design value of the pull-through resistance for the different fixing locations.
Wind suction and pressure resistan	ce
Resistance to wind load M/E/C corrected for f_{05} declared (15 N/mm ²) Average strength N 10 mm PLY	Screws: 977 / 445 /238 (according to Annex A4 Table A1) Nails: 453 / 304 / 235 (according to Annex B4 Table B4)
Average strength N 8 mm PLY	Screws: 1097 / 429 / 222 (according to Annex A3 Table A1) Nails: 768 / 495 / 242 (according to Annex B3 Table B3)
Average strength N 6 mm PLY	Screws: 453 / 208 / 115 (according to Annex A1 Table A1 and Anne A2 Table A2)

Average failure load N/m²:

Average failure load N/m²:

Average failure load N/m²:

10 mm PLY

8 mm PLY

6 mm PLY

Nails: 454 / 252 / 128 (according to Annex B1 Table B1 and Annex B2 Table B2)

Screws: 1737 / 1853 / 2128 (according to Annex A4 Table A1) Nails : 966 / 1351 / 2446 (according to Annex B4 Table B4)

Screws: 2808 / 2592 / 2790 (according to Annex A3 Table A1) Nails: 2457 / 3177 / 3654 (according to Annex B3 Table B3)

Screws: 1811 / 1935 / 2137 (according to Annex A1 Table A1 and Annex A2 Table A2) Nails: 2422 / 2908 / 2986 (according to Annex B1 Table B1 and Annex B2 Table B2)

Characteristic Assessment of characteristic				
Mechanical resistance	Mechanical resistance			
Characteristic shear strength mechanical fixings	screw	6 / 8 / 10 mm : 1160 / 1162 / 1406 (N)		
Average values	nail	6 / 8 /10 mm : 900 / 863 / 935 (N)		

aracteristic		Assessment of characteristic	
Impact res	stance [a]		
PLY 1	0, 8 and 6 mm	See Table 5	
[a] For	definition of use category se	e Table 15	

Ch	aracteristic	Assessment of characteristic
	Hygrothermal behaviour	
	Resistance to Hygro-thermal cycles	Pass
	Dimensional stability	See Table 6
	Resistance to Xenon Arc exposure	Not relevant

*) In addition to the specific clauses relating to dangerous substances contained in this European Technical Assessment, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the EU Construction Products Directive, these requirements need also to be complied with, when and where they apply.

Aspects related to the performance of the product

All materials shall be manufactured by ROCKWOOL B.V. or by subcontractors under the responsibility of ROCKWOOL B.V. / ROCKPANEL Group

The European Technical Assessment is issued for the product on the basis of agreed data/information, deposited with ETA-Danmark, which identifies the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to ETA-Danmark before the changes are introduced. ETA-Danmark will decide whether or not such changes affect the ETA and consequently the validity of the CE marking on the basis of the ETA and if so whether further assessment or alterations to the ETA, shall be necessary.

Installation details and application details for the man on site are given by ROCKWOOL B.V. / ROCKPANEL Group in the manufacturer's application guide technical dossier which forms part of the documentary material for this ETA. On the protective film of every board the website is printed which guides the end user to the most actual information.

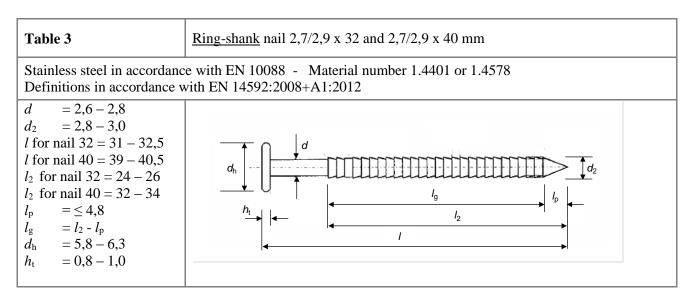
For non-ventilated use, the substrate shall be airtight.

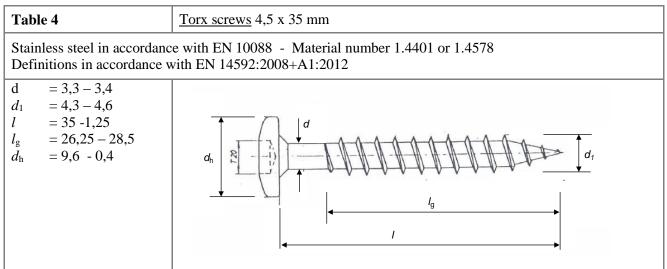
The boards are in general mounted with a joint width of between 5 and 8 mm.

If the joints are to be sealed, only durable sealants should be used with a good adhesion on the edges of the boards and a good UV-stability. To prevent sticking to the subframe, a PE-film or tape can be used.

The cladding kit shall be designed and installed so that water which penetrates in the air space or condensation water shall be drained out of the installed kit without accumulation or moisture damage or leakage into the substrate or the wall cladding kit

The boards for external cladding shall not be fixed over building or settlement joints. Where settlement joints are located in the building the same movements of the building and substructure shall be possible in the external cladding.


The water diffusion resistance of the boards is declared as a means for the designer to decide whether they are sufficiently vapour permeable, especially when used for cladding without ventilated cavities at the back. The designer can then establish that condensation in the entire wall as a result of water vapour diffusion will not occur or will occur only to an extent where damage is not caused during the condensation period and the wall will dry out again during the evaporation period. The designer shall consider the critical moisture content for all the integrated materials.


For non-ventilated intended use, the pressure level preceding the pressure level where leakage occurs is declared as a means for the designer to decide on the necessity of the use of a vapour control membrane.

The panels should not be taken into account when designing a timber stud wall to resist racking forces.

The holes for the fixings are drilled into the panels not less than 15 mm or 20 mm from a vertical edge and 50 mm from a horizontal edge (see Table 11) The panels are fixed making sure that the screws are not overtightened.

Board fixing with fixed points, slotted holes and moving points in accordance with Table 10.

Impact resistance

Table 5 Shatter properties – Degrees of exposure in use						
			product 'PLY' 6, 8 and 10 mm			
		energy J	category IV	category III	category II	category I
	0,5 kg	1	Pass		-	
impact by hard	0,5 kg	3		Pass	Pass	Pass
body	1 kg	10			damaged by impact at the bottom	

Dimensional stability

Table 6 Deformation ROCKPANEL 'PLY' in accordance with EN 438-2				
	'PLY' 1000/8			
characteristic	length of the board	width of the board		
deformation	0,068 %	0,065 %		
dry heat 23° / 50% to 23°C / 0% (mm/m)	-0,284	-0,239		
coefficient of thermal expansion (10 ⁻⁶ °K ⁻¹)	9,4	10,1		
coefficient of moisture expansion 42% change RH (mm/m) 50% to 92% RH after 4 days	0,237	0,244		

Wind load resistance

Table 7 Test results average failure load panel fixing N/m ² corrected for f_{05} declared (15 N/mm ²). Positions according to Table 9				
	6 mm M / E / C	8 mm M / E / C	10 mm M / E / C	
Screws	1811 / 1935 / 2137	2808 / 2592 / 2790	1737/ 1853 / 2128	
Nails	2422 / 2908 / 2986	2457 / 3177 / 3654	966 / 1351 / 2446	

Table 8 Test r	Table 8 Test results average strength panel fixing N corrected for f_{05}							
declared (15 N/mm ²) Positions according to Table 9								
	6 mm	8 mm	10 mm					
	M / E / C	M / E / C	M/E/C					
Screws	Screws 453 / 208 / 115 1097 / 429 / 222 977 / 445 / 238							
Nails	454 / 252 / 128	768 / 495 / 242	453 / 304 / 235					

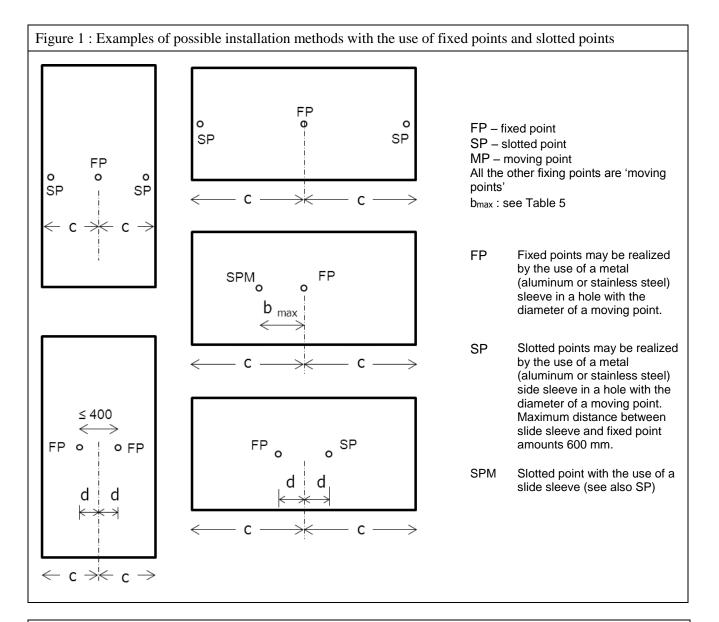
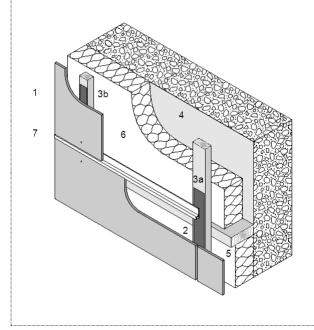

Fixing positions

Table 9 Fixing posit	tions M	1 / E / C	usec	in this document
	• _C	° _E	o	M: fixing in intermediate position E: edge fixing C: corner fixing
	° Е	• M	0	
	0	ο	ο	


Table 10	Hole di	iameter	rs mm			
					screw	nail
0	0	0		F - Fixed point	3,2	2,5
0	F O	so	<u>_</u>	S - Slotted holes	4,4 x 5,5	2,8 x 4,0
s		s	a	Moving points – all the other positions	5,5	4,0 [a]
0	0	0	a			
a₁ b → ←			Î			

[a] max board length considered 2300 mm (a larger panel length requires a larger hole and head diameter)

Table 11 M	inimum edg	e distance	es and max	ximum dis	stances betw	veen faste	nings in mr	n	
		b_{max}			a _{max}		a1		a_2
	6	8	10	6	8	10	6 / 8	10	6/8/10
Screw	400	500	600	400	500	600	15	20	50
Nail	400	500	600	300	400	500	15	20	50

Figure 2. Ventilated intended use

- Compressed mineral wool board with organic or inorganic finish
- 2 EPDM foam gasket
- 3 Subframe: a joint batten and b intermediate batten
- 4 Vapour barrier
- 5 Timber beam
- 6 Insulation

1

7 ROCKPANEL "A" – 8 mm aluminum chair profile or equivalent

4 Attestation and verification of constancy of performance (AVCP)

4.1 AVCP system

According to the decision 2003/640/EC of the European Commission as amended, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1, since there is a clearly identifiable stage in their production which results in an improvement of fire performance due to the limiting of organic material.

5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark

Issued in Copenhagen on 2015-11-03 by

Thomas Bruun Managing Director, ETA-Danmark

CHARACTERISTIC AXIAL LOAD - screw / PLY 6 / gasket

Та	ble A1: Characteristic	axial load X_i	and design value of	the axial load	$X_d = X_k / \gamma_M$ fo	or the combina
sc	rew and 6 mm boards	(with the us	e of gaskets), with α	≥ 30° [e] correct	ed for f ₀₅ declar	ed (15 N/mm ²).
boa	ard thickness	•	- <i>i</i>	6 mm (v	vith the use of a	gasket)
	ation of the fixing in the b	oard accordi	ng to table 9	M-middle	E-edge	C-corner
pul	ll-through N					
	characteristic pull-thro	ugh N		407	235	128
	material factor ROCKI declaration)	PANEL 🎢 (m	nanufacturers	2,0	2,0	2,0
	design value X_d of t	he pull-throu	ugh N	204	118	64
wir	nd suction	•	0			
	average wind load in N	√/m²		1811	1935	2137
	average strength N			453	208	115
	material factor ROC declaration)	KPANEL η_h	1 (manufacturers	2,0	2,0	2,0
	design value X_d of t	he pull-throu	ugh N	227	104	58
wit	hdrawal capacity					
	characteristic withdrawa	al capacity F₅	x,k,Rk [b] [C] [d]			
	strength class	C18	$\rho_{\rm k} = 320 \text{ kg/m}^3$	963 [b]	963 [b]	963 [b]
	wood (EN 338)	C24	$\rho_{\rm k}$ = 350 kg/m ³	1035 [b]	1035 [b]	1035 [b]
		moo	dification factor for kmod		k _{mod} [a]	
	axial withdrawal capacit	ty Fax,k,Rk . Kmc	d [a] [b] [c] [d]			
	strength class	C18	$\rho_{\rm k} = 320 \text{ kg/m}^3$	963 • k _{mod}	963 • k _{mod}	963 • k _{mod}
	wood (EN 338)	C24	$\rho_{\rm k} = 350 \ {\rm kg/m^3}$	1035 • k _{mod}	1035 • k _{mod}	1035 • k _{mod}
	material factor (NA	to) EN 1995	-1-1 §2.4.1	$\gamma_M = 1,$	30 [withdrawal ca	apacity]
	design value X _d of the	e axial witho	drawal capacity N			
	strength class	C18	$\rho_{\rm k} = 320 \ {\rm kg}/{\rm m}^3$	740 • k _{mod}	740 • k _{mod}	740 • k _{mod}
	wood (EN 338)	C24	$\rho_{\rm k} = 350 \ {\rm kg}/{\rm m}^3$	796 • k _{mod}	796 • k _{mod}	796• k _{mod}
de	sign value of the axia	I load $X_d =$	<i>X_k</i> / γ _M N	minimu	m value of th	e rows:
	strength class	C18	$\rho_{\rm k}$ = 320 kg/m ³	(3) (7) (15)	(3) (7) (15)	(3) (7) (15)
	wood (EN 338)	C24	$\rho_{\rm k}$ = 350 kg/m ³	(3) (7) (16)	(3) (7) (16)	(3) (7) (16)
	board span b				400	
	fixing distance a				400	

[a]: modification factor k_{mod} depends on the service lass (humidity conditions) and the load-duration class according to the National Annex of EN 1995-1-1

[b]: with reduced thread diameter to fulfil the minimum l_{ef} demand ($d = l_{ef} / 6 = 26,25/6 = 4,30$ mm);

[c]: angle α between shaft and the wood grain: $\alpha \geq 30^{\circ}$

[d]: calculation in accordance with EN 1995-1-1+C1+A1:2008 formula (8.38), (8.39) and (8.40)

CHARACTERISTIC AXIAL LOAD - screw / PLY 6 / strip PLY 6

Tabl	e A2: Characteristic a	axial load λ	k and design value of	the axial load	$X_d = X_k / \gamma_{\sf M}$ for	or the combination
scre N/mr		(with the us	se of PLY 6 mm strips)	, with $\alpha \ge 30^\circ$	e] corrected for	f ₀₅ declared (1
board	d thickness			6 mm (v	vith the use of a	i gasket)
	ion of the fixing in the b	oard accord	ing to table 9	M-middle	E-edge	C-corner
pull-t	hrough N					
ļ	characteristic pull-through	ugh N	407	235	128	
	material factor ROCKF declaration)	PANEL 🎢 (r	nanufacturers	2,0	2,0	2,0
	design value X _d of the	ne pull-thro	ugh N	204	118	64
wind	suction					
Γ	average wind load in N	I/m²		1811	1935	2137
[average strength N			453	208	115
	material factor ROC declaration)	KPANEL γ	M (manufacturers	2,0	2,0	2,0
	design value X _d of th	ne pull-thro	ugh N	227	104	58
withd	rawal capacity	•				•
(characteristic withdrawa	I capacity F	ax,k,Rk [b] [c] [d]			
	strength class	C18	$\rho_{\rm k} = 320 \ \rm kg/m^3$	588 [b]	588 [b]	588 [b]
	wood (EN 338)	C24	$\rho_{\rm k} = 350 \ \rm kg/m^3$	632 [b]	632 [b]	632 [b]
		mc	dification factor for kmod		k _{mod} [a]	•
ć	axial withdrawal capacit	y F _{ax,k,Rk} . k m	_{od} [a] [b] [c] [d]			
	strength class	C18	$\rho_{\rm k}$ = 320 kg/m ³	588 • k _{mod}	588 • k _{mod}	588 • k _{mod}
	wood (EN 338)	C24	$\rho_{\rm k}$ = 350 kg/m ³	632 • k _{mod}	632 • k _{mod}	632 • k _{mod}
	material factor (NA	to) EN 1995	5-1-1 §2.4.1	$\gamma_{M} = 1,$	30 [withdrawal ca	apacity]
(design value X_d of the	e axial with	drawal capacity N			
	strength class	C18	$\rho_{\rm k}$ = 320 kg/m ³	452 • k _{mod}	452 • k _{mod}	452 • k _{mod}
	wood (EN 338)	C24	$\rho_{\rm k} = 350 \ {\rm kg}/{\rm m}^3$	486 • k _{mod}	486 • k _{mod}	486 • k _{mod}
desi	gn value of the axia	I load X _d =	= <i>X_k</i> / γ _M N	minimu	m value of th	ne rows:
٤	strength class	C18	$\rho_{\rm k} = 320 \text{ kg/m}^3$	(3) (7) (15)	(3) (7) (15)	(3) (7) (15)
١	wood (EN 338)	C24	$\rho_{\rm k}$ = 350 kg/m ³	(3) (7) (16)	(3) (7) (16)	(3) (7) (16)
	board span b				400	
	fixing distance a				400	

[a]: modification factor k_{mod} depends on the service lass (humidity conditions) and the load-duration class according to the National Annex of EN 1995-1-1

[b]: with reduced thread diameter to fulfil the minimum l_{ef} demand ($d = l_{ef} / 6 = 21,15/6 = 3,52 \text{ mm}$);

[c]: angle α between shaft and the wood grain: $\alpha \ge 30^{\circ}$

[d]: calculation in accordance with EN 1995-1-1+C1+A1:2008 formula (8.38), (8.39) and (8.40)

CHARACTERISTIC AXIAL LOAD - screw / PLY 8 / gasket

Tal	ble A1: Characteristic ax	ial load X_k a	and design value of	the axial load	$X_d = X_k / \gamma_M$ fc	or the combination
	r ew and 8 mm boards (w		-		•	
	ard thickness		0 //		vith the use of a	
	ation of the fixing in the boa	rd according	M-middle	E-edge	C-corner	
pull	I-through N					
	characteristic pull-throug	h N		642	508	331
	material factor ROCKPA declaration)	NEL 🎢 (ma	nufacturers	2,0	2,0	2,0
	design value X_d of the	pull-throug	Jh N	321	254	166
win	d suction					
	average wind load in N/r	n²		2808	2592	2790
	average strength N			1097	429	222
	material factor ROCKI	PANEL 1/M	(manufacturers	2,0	2,0	2,0
	design value X_d of the	pull-throug	Jh N	549	215	111
with	ndrawal capacity					
	characteristic withdrawal	capacity Fax,k	_{k,Rk} [b] [c] [d]			
	strength class	C18	$\rho_{\rm k} = 320 \ \rm kg/m^3$	858 [b]	858 [b]	858 [b]
	wood (EN 338)	C24	$\rho_{\rm k} = 350 \text{ kg/m}^3$	922 [b]	922 [b]	922 [b]
		modif	ication factor for kmod		k _{mod} [a]	
	axial withdrawal capacity	Fax,k,Rk . kmod	[a] [b] [c] [d]			
	strength class	C18	$\rho_{\rm k}$ = 320 kg/m ³	858 • k _{mod}	858 • k _{mod}	858 • k _{mod}
	wood (EN 338)	C24	$\rho_{\rm k}$ = 350 kg/m ³	922 • k _{mod}	922 • k _{mod}	922 • k _{mod}
_	material factor (NA to	-	-	$\gamma_{M} = 1,$	30 [withdrawal ca	apacity]
	design value X_d of the a	axial withdra	awal capacity N			
	strength class	C18	ρ _k = 320 kg/m ³	660 • k _{mod}	660 • k _{mod}	660 • k _{mod}
	wood (EN 338)	C24	ρ _k = 350 kg/m ³	709 • k _{mod}	709 • k _{mod}	709• k _{mod}
de	sign value of the axial l	oad $X_d = X$	<i>κ</i> / γ _M N	minimu	m value of th	e rows:
	strength class	C18	$\rho_{\rm k}$ = 320 kg/m ³	(3) (7) (15)	(3) (7) (15)	(3) (7) (15)
	wood (EN 338)	C24	$\rho_{\rm k} = 350 \text{ kg/m}^3$	(3) (7) (16)	(3) (7) (16)	(3) (7) (16)
	board span b				500	
	fixing distance a				500	

[a]: modification factor k_{mod} depends on the service lass (humidity conditions) and the load-duration class according to the National Annex of EN 1995-1-1

[b]: with reduced thread diameter to fulfil the minimum l_{ef} demand ($d = l_{ef} / 6 = 24,75/6 = 4,12 \text{ mm}$);

[c]: angle α between shaft and the wood grain: $\alpha \geq 30^{\circ}$

[d]: calculation in accordance with EN 1995-1-1+C1+A1:2008 formula (8.38), (8.39) and (8.40)

CHARACTERISTIC AXIAL LOAD - screw / PLY 10 / gasket

30100	v and 10 mm boards	: (with the ι	use of gaskets), with α	≥ 30° [e] correc	cted for fos decla	ared (15 N/mm
	thickness	(vith the use of a	
locatio	on of the fixing in the bo	oard accordi	ng to table 9	M-middle	E-edge	C-corner
	rough N					-
(characteristic pull-throu	ugh N	498	449	311	
	material factor ROCKP declaration)	PANEL γ _Μ (n	nanufacturers	2,0	2,0	2,0
(design value X _d of th	ne pull-thro	ugh N	249	225	156
wind s	uction					
i	average wind load in N	l/m²		1737	1853	2128
ć	average strength N			977	445	238
	material factor ROCI	KPANEL 🎢	M (manufacturers	2,0	2,0	2,0
(design value X _d of th	ne pull-thro	ugh N	489	223	119
withdra	awal capacity					
cł	naracteristic withdrawa	I capacity Fa	ax,k,Rk [b] [c] [d]			
	strength class	C18	$\rho_{\rm k} = 320 \ \rm kg/m^3$	701 [b]	701 [b]	701 [b]
	wood (EN 338)	C24	$\rho_{\rm k} = 350 \ \rm kg/m^3$	753 [b]	753 [b]	753 [b]
		mo	dification factor for kmod		k _{mod} [a]	
a	kial withdrawal capacity	y Fax,k,Rk . km	od [a] [b] [c] [d]			
	strength class	C18	$\rho_{\rm k} = 320 \ \rm kg/m^3$	701 • k _{mod}	701 • k _{mod}	701 • k _{mod}
	wood (EN 338)	C24	$\rho_{\rm k} = 350 \ \rm kg/m^3$	753 • k _{mod}	753 • k _{mod}	753 • k _{mod}
	material factor (NA	to) EN 1995	-1-1 §2.4.1	$\gamma_{\rm M} = 1$,	30 [withdrawal ca	apacity]
d	esign value X_d of the	axial with	drawal capacity N			
	strength class	C18	$\rho_{\rm k} = 320 \ \rm kg/m^3$	539 • k _{mod}	539 • k _{mod}	539 • k _{mod}
	wood (EN 338)	C24	$\rho_{\rm k} = 350 \ \rm kg/m^3$	579 • k _{mod}	579 • k _{mod}	579 • k _{mod}
desig	n value of the axial	l load X _d =	: X _k / γ _M N	minimu	m value of th	ne rows:
st	rength class	C18	$\rho_{\rm k} = 320 \text{ kg/m}^3$	(3) (7) (15)	(3) (7) (15)	(3) (7) (15)
w	ood (EN 338)	C24	$\rho_{\rm k} = 350 \text{ kg/m}^3$	(3) (7) (16)	(3) (7) (16)	(3) (7) (16)
	board span b	·			600	
1	fixing distance a				600	

[a]: modification factor k_{mod} depends on the service lass (humidity conditions) and the load-duration class according to the National Annex of EN 1995-1-1

[b]: with reduced thread diameter to fulfil the minimum l_{ef} demand ($d = l_{ef} / 6 = 22,75/6 = 3,79 \text{ mm}$);

[c]: angle α between shaft and the wood grain: $\alpha \geq 30^{\circ}$

[d]: calculation in accordance with EN 1995-1-1+C1+A1:2008 formula (8.38), (8.39) and (8.40)

Characteristic axial load - nail / PLY 6 / gasket

ANNEX B1

			K _k and design value of			
	mm nall and 6 mm P	LY boards	(with the use of gaskets		t_{05} declared (15) with the use of a	
	ation of the fixing in the l	noard accord	ling to table 9	M-middle	E-edge	C-corner
	-through N			W madio	L ougo	0 001101
P	characteristic pull-thre	ough N	199	133	132	
	material factor ROCK	PANEL 1/M	2,0	2,0	2,0	
	design value X_d of		,	100	67	66
wine	d suction	•	0			•
	average wind load in	N/m²		2422	2908	2986
	average strength N			454	252	128
	material factor ROC declaration)	CKPANEL 🤉	∕M (manufacturers	2,0	2,0	2,0
	design value X _d of	the pull-thro	ough N	227	146	64
with	drawal capacity					
Γ	characteristic withdraw	al capacity I	F _{ax,k,Rk} [b] [d]			
	strength class	C18	$\rho_{\rm k}$ = 320 kg/m ³	217	217	217
	wood (EN 338)	C24	$\rho_{\rm k}$ = 350 kg/m ³	259	259	259
		m	odification factor for kmod		k _{mod} [a]	•
Γ	axial withdrawal capac	ity F _{ax,k,Rk} . km	od [a] [b] [d]			
	strength class	C18	$\rho_{\rm k}$ = 320 kg/m ³	217 • k _{mod}	217 • k _{mod}	217 • k _{mod}
	wood (EN 338)	C24	$\rho_{\rm k}$ = 350 kg/m ³	259 • k _{mod}	259 • k _{mod}	259 • k _{mod}
	material factor (NA	to) EN 199	5-1-1 §2.4.1	γ _M = 1,3	30 [withdrawal c	apacity]
Γ	design value X _d of the	ne axial witl	ndrawal capacity N			
	strength class	C18	$\rho_{\rm k}$ = 320 kg/m ³	167 • k _{mod}	167 • k _{mod}	167 • k _{mod}
	wood (EN 338)	C24	$\rho_{\rm k}$ = 350 kg/m ³	199 • k _{mod}	199 • k _{mod}	199 • k _{mod}
des	sign value of the axi	al load X _d =	<i>- X_k / γ</i> _M N	minim	um value of the	e rows:
Γ	strength class	C18	$\rho_{\rm k}$ = 320 kg/m ³	(3) (7) (15)	(3) (7) (15)	(3) (7) (15)
	wood (EN 338)	C24	$\rho_{\rm k}$ = 350 kg/m ³	(3) (7) (16)	(3) (7) (16)	(3) (7) (16)
	board span b				400	
	fixing distance a				300	

[a]: modification factor k_{mod} depends on the service lass (humidity conditions) and the load-duration class according to the National Annex of EN 1995-1-1

[b]: with reduced thread diameter to fulfil the minimum l_{ef} demand ($d = l_{ef} / 8 = 18,4/8 = 2,30 \text{ mm}$);

Characteristic axial load - nail / PLY 6 / strip PLY 6

ANNEX B2

			K _k and design value of			
		Y boards (with the use of 6 mm F			
	ard thickness		ling to table 0	M-middle	the use of 6 mm	C-corner
	ation of the fixing in the b I-through N		ling to table 9	M-madie	E-edge	C-comer
pui	characteristic pull-thro	uah N		199	133	132
	material factor ROCK		2,0	2,0	2,0	
	design value X_d of the	()	,	100	67	66
win	d suction	•	0			
	average wind load in N	√m²		2422	2908	2986
	average strength N			454	252	128
	material factor ROC declaration)	KPANEL γ	$_{ m M}$ (manufacturers	2,0	2,0	2,0
	design value X _d of the	ne pull-thro	ough N	227	146	64
wit	ndrawal capacity					
	characteristic withdrawa	al capacity F	a _{x,k,Rk} [b] [d]			
	strength class	C18	ρ _k = 320 kg/m ³	271	271	271
	wood (EN 338)	C24	$\rho_{\rm k}$ = 350 kg/m ³	325	325	325
		ma	odification factor for kmod		k _{mod} [a]	
	axial withdrawal capacit	y F _{ax,k,Rk} . km	_{od} [a] [b] [d]			
	strength class	C18	$\rho_{\rm k}$ = 320 kg/m ³	271 • k _{mod}	271 • k _{mod}	271 • k _{mod}
	wood (EN 338)	C24	$\rho_{\rm k}$ = 350 kg/m ³	325 • k _{mod}	325 • k _{mod}	325 • k _{mod}
	material factor (NA	to) EN 199	5-1-1 §2.4.1	$\gamma_{\rm M} = 1.3$	30 [withdrawal c	apacity]
	design value X _d of the	e axial with	ndrawal capacity N			
	strength class	C18	$\rho_{\rm k} = 320 \ \rm kg/m^3$	208 • k _{mod}	208 • k _{mod}	208 • k _{mod}
	wood (EN 338)	C24	$\rho_{\rm k}$ = 350 kg/m ³	250 • k _{mod}	250 • k _{mod}	250 • k _{mod}
de	sign value of the axia	l load X_d =	<i>X_k / γ</i> _M N	minim	um value of the	e rows:
	strength class	C18	$\rho_k = 320 \text{ kg/m}^3$	(3) (7) (15)	(3) (7) (15)	(3) (7) (15)
	wood (EN 338)	C24	ρ_k = 350 kg/m ³	(3) (7) (16)	(3) (7) (16)	(3) (7) (16)
	board span b				400	
	fixing distance a				300	

[a]: modification factor k_{mod} depends on the service lass (humidity conditions) and the load-duration class according to the National Annex of EN 1995-1-1

[b]: with reduced thread diameter to fulfil the minimum l_{ef} demand ($d = l_{ef} / 8 = 20,6/8 = 2,57 \text{ mm}$);

Characteristic axial load - nail / PLY 8 / gasket

ANNEX B3

			K _k and design value of			
		LY boards	with the use of gaskets			,
	rd thickness				vith the use of a	e /
	ation of the fixing in the	board accord	ling to table 9	M-middle	E-edge	C-corner
pull	-through N			(70	0.4.4	(00
	characteristic pull-th	U		176	211	193
	material factor ROCI		2,0	2,0	2,0	
	design value X _d of	the pull-thro	bugh N	88	106	97
wind	d suction			0.157	0.177	0.05.4
	average wind load in	N/m²		2457	3177	3654
	average strength N			768	495	242
	material factor RO declaration)		•	2,0	2,0	2,0
	design value X _d of	the pull-thro	bugh N	384	248	121
with	drawal capacity					
Γ	characteristic withdraw	val capacity F	Fax,k,Rk [b] [d]			
	strength class	C18	$\rho_{\rm k}$ = 320 kg/m ³	168	168	168
	wood (EN 338)	C24	$\rho_{\rm k}$ = 350 kg/m ³	201	201	201
		m	odification factor for kmod		k _{mod} [a]	
	axial withdrawal capac	city F _{ax,k,Rk} .km	_{od} [a] [b] [d]			
	strength class	C18	$\rho_{\rm k}$ = 320 kg/m ³	168 • k _{mod}	168 • k _{mod}	168 • k _{mod}
	wood (EN 338)	C24	$\rho_{\rm k}$ = 350 kg/m ³	201 • k _{mod}	201 • k _{mod}	201 • k _{mod}
	material factor (N	A to) EN 199	5-1-1 §2.4.1	γ _M = 1,3	0 [withdrawal c	apacity]
_	design value X _d of t	he axial with	ndrawal capacity N			
	strength class	C18	$\rho_{\rm k}$ = 320 kg/m ³	129 • k _{mod}	129 • k _{mod}	129 • k _{mod}
	wood (EN 338)	C24	$\rho_{\rm k}$ = 350 kg/m ³	155 • k _{mod}	155 • k _{mod}	155 • k _{mod}
des	sign value of the ax	ial load X_d =	<i>X_k / γ</i> _M N	minim	um value of the	e rows:
	strength class	C18	$\rho_k = 320 \text{ kg/m}^3$	(3) (7) (15)	(3) (7) (15)	(3) (7) (15)
	wood (EN 338)	C24	$\rho_{\rm k}$ = 350 kg/m ³	(3) (7) (16)	(3) (7) (16)	(3) (7) (16)
	board span b				500	
	fixing distance a				400	

[a]: modification factor k_{mod} depends on the service lass (humidity conditions) and the load-duration class according to the National Annex of EN 1995-1-1

[b]: with reduced thread diameter to fulfil the minimum l_{ef} demand ($d = l_{ef} / 8 = 16,2/8 = 2,02 \text{ mm}$);

Characteristic axial load - nail / PLY 10 / gasket

ANNEX B4

			(with the use of gaske				
	thickness		,	10 mm (with the use of a gasket)			
	on of the fixing in the l trough N	board accord	ling to table 9	M-middle	E-edge	C-corner	
	characteristic pull-thre	ouah N		156	131	127	
	material factor ROCK		2,0	2,0	2,0		
	design value X _d of		78	66	64		
			Jugit N	70	00		
	average wind load in	N/m²		966	1351	2446	
	average strength N			453	304	235	
	material factor ROC declaration)	CKPANEL 🤉	2,0	2,0	2,0		
	design value X _d of	the pull-thro	ough N	227	152	118	
withdr	awal capacity						
с	haracteristic withdraw	al capacity F	F _{ax,k,Rk} [b] [d]				
	strength class	C18	$\rho_{\rm k}$ = 320 kg/m ³	296	296	296	
	wood (EN 338)	C24	$\rho_{\rm k}$ = 350 kg/m ³	354	354	354	
		m	odification factor for kmod	k _{mod} [a]			
a	xial withdrawal capac	ity F _{ax,k,Rk} . km	_{od} [a] [b] [d]				
	strength class	C18	$\rho_{\rm k}$ = 320 kg/m ³	296 • k _{mod}	296 • k _{mod}	296 • k _{mod}	
	wood (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	354 • k _{mod}	354 • k _{mod}	354 • k _{mod}	
	material factor (NA	(to) EN 199	5-1-1 §2.4.1	γ _M = 1,3	0 [withdrawal c	apacity]	
d	lesign value X _d of th	ne axial with	ndrawal capacity N				
	strength class	C18	$\rho_{\rm k}$ = 320 kg/m ³	228 • k _{mod}	228 • k _{mod}	228 • k _{mod}	
	wood (EN 338)	C24	$\rho_{\rm k}$ = 350 kg/m ³	272 • k _{mod}	272 • k _{mod}	272 • k _{mod}	
desig	n value of the axi	al load X _d =	<i>X_k / γ</i> _M N	minim	um value of the	e rows:	
st	trength class	C18	$\rho_{\rm k}$ = 320 kg/m ³	(3) (7) (15)	(3) (7) (15)	(3) (7) (15)	
w	/ood (EN 338)	C24	$\rho_{\rm k}$ = 350 kg/m ³	(3) (7) (16)	(3) (7) (16)	(3) (7) (16)	
	board span b				600		
	fixing distance a				500		

[a]: modification factor k_{mod} depends on the service lass (humidity conditions) and the load-duration class according to the National Annex of EN 1995-1-1

Table 12 - Control plan for the manufacturer

Nr	Subject/type of control	Test or control method	Criteria, if any Samples		Minimum frequency of control				
(1)	(2)	(3)	(4) (5)		(6)				
	Factory production control (FPC) [including testing of samples in accordance with a prescribed test plan]*								
1	Board thickness	EN 325	6 ± 0,3 mm 8 ± 0,5 mm 10 ± 0,5 mm		One board for every 200 boards produced				
2	Density	EN 323	1000 -100 / +150 kg/m ³	40 [a]	One board for every 200 boards produced				
3	Bending strength dry parallel and perpendicular to the production direction	EN 310	f ₀₅ ≥ 15 N/mm²	20 (length) + 20 (width) [a]	One board for every 200 boards produced				
4	Bending strength after ageing parallel and perpendicular to the production direction	EN 310 Ageing in accordance with description in table 13	lowest individual strength f ≥ 12 N/mm²	3 (length) + 2 (width)	One board for every 200 boards produced				
5	Water absorption after 4 days	er see table 13 ≤ 2 weight % after 4 days; if sample fails, the 2 nd sample must be tested.		1 (2 in the case of fail)	One board for every 200 boards produced				
6	Organic material content (resin binder)	Glowing at 650° 8 ± 1,5 weight % 40 [a] for at least 60 min. <i>Remark: time</i> depends on the type of oven		40 [a]	One board for every 200 boards produced				
7	Reaction to fire [b]	EN 13162 loss on ignition Table B.2	Table 4 EN 13501-1	Three specimen [b]	every two years				
	low mentioned contr acturer as part of his		e sub-supplier and the docume	ntation is maintai	ned by the board				
8	Dowel-type fasteners for timber structures		EN 14592, Annex ZA.2 Procedure for attestation of conformity		Every 3 years				
9	EPDM foam gasket	t	Manufacturers declaration	Every 3 years					
	[a] amount of samples from four different boards[b] Small components, e.g. gaskets and seals shall be considered on the basis of EOTA Technical Report TR 021								

Annex C

Table 13 - Special methods of control and testing used for the evaluation

Bendina st	rength after ageing				
	Ageing of the 5 test pieces in (tab)water from 70°C (with surface tension changing additives : for instance 0,5 ml Triton per litre) for 30 minutes.				
	Determination of the bending strength in accordance with EN-310 within 20 minutes after the ageing period in a test room with an air temperature between 17 and 23°C.				
Water abs	orption				
	The water absorption by the edges must be determined on test pieces W1 in the size 50*400 mm.				
	The dimensions and the weight of the test pieces is determined.				
	The sample is wrapped with aluminum foil with the exception of one 50 mm edge.				
	The test pieces are vertically placed in a bucket with tab water, with the 50 mm size without aluminum foil horizontally in the water. The edge must be 1 to 5 mm in the water (without additives).				
	Test conditions:				
	Water temperature	17 - 23 °C			
	Room temperature	17 - 23 °C			
	test piece water	e W1 ← alu-foil 50 mm edge not covered ↓ depth 1 to 5 mm			

Table 14 - Control plan for the notified body (bodies)

Nr	Subject/type of control	Test or control method	Criteria, if any	Minimum number of samples	Minimum frequency of control	
(1)	(2)	(3)	(4)	(5)	(6)	
	Initial type-testing of the product (ITT)					
1	1 Testing to determine the product performance has been carried out under the responsibility of the TAB as part of the procedure to issue the ETA					
Initial inspection of factory and factory production control (FPC)						
1	See table 12					
Continuous surveillance, judgment and assessment of factory production control (FPC)						
1	See table 12					

Table 15 – Impact resistance : Definition of use categories

Use category	Description		
I	A zone readily accessible at ground level to the public and vulnerable to hard body impacts but not subjected to abnormally rough use.		
II	A zone liable to impacts from thrown or kicked objects, but in public locations where the height of the kit will limit the size of the impact; or at lower levels where access to the building is primarily to those with some incentive to exercise care.		
111	A zone not likely to be damaged by normal impacts caused by people or by thrown or kicked objects.		
IV	A zone out of reach from ground level		

The hard body impact with steel ball represents the action from heavy, non-deformable objects, which accidentally hit the kit.