

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-13/0648 of 02/11/2015

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:

ROCKPANEL Natural Durable 8 mm and 10 mm ROCKPANEL Natural Xtreme 8 mm and 10 mm

Product family to which the above construction product belongs:

Prefabricated mineral wool boards with organic or inorganic finish and with specified fastening system

Manufacturer:

ROCKWOOL B.V. Konstruktieweg 2 NL-6045 JD Roermond Tel. +31 475 353 000 Fax +31 475 353 550

Manufacturing plant:

ROCKWOOL B.V. / ROCKPANEL Group

Konstruktieweg 2 NL-6045 JD Roermond

This European Technical Assessment contains:

29 pages including 6 annexes which form an integral part of the document

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of:

European Assessment Document (EAD) no. EAD 090001-00-0404 for Prefabricated compressed mineral wool boards with organic or inorganic finish and with specified fastening system, edition May 2015.

This version replaces:

The previous ETA with the same number and validity from 2013-06-21 to 2018-06-21

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

Technical description of the product General

ROCKPANEL 'Natural Durable' 8 and 10 mm and ROCKPANEL 'Natural Xtreme' 8 and 10 mm are prefabricated compressed mineral wool boards with thermo-setting synthetic binders. The boards are fastened to timber, aluminum or steel subframes. Fastening to the timber subframe is carried out with corrosion resistant nails or screws. Fastening to aluminium or steel subframe is carried out with corrosion resistant rivets. Mechanical fasteners, gaskets and aluminum profiles are specified by the ETA-holder.

The ROCKPANEL 'Natural' panels are not surface treated with an organic or inorganic finish.

The physical properties of the 'Durable' panels are indicated in Table 1.

The physical properties of the 'Xtreme' panels are indicated in Table 2.

Table 1 Physical properties of the 'Durable'

Property	Value
Thickness and tolerances mm	$8 \pm 0.5/10 \pm 0.5$
Length, max mm	3050
Width, max mm	1250
Density, nominal and tolerances	$1050 \text{ kg/m}^3 \pm 150$
Bending strength, length and	$f_{05} \ge 27 \text{ N/mm}^2$
width	
Modulus of elasticity N/mm ²	$m(E) \ge 4015$
Thermal conductivity	0,37 W/(m • K)
Cumulative dimensional change	Length: ≤ 0,085 %
according to EN 438-2	Width: $\leq 0.084 \%$
Coefficient of thermal expansion,	$\alpha = 10.5 (10^{-6} \text{ K}^{-1})$
length and width	$\alpha = 10,3 (10 \text{ K})$
Coefficient of moisture expansion	\leq 0,302 mm/m after
23° C/50% RH to 92% RH	4 days

Table 2 Physical properties of the 'Xtreme'

Property	Value
Thickness and tolerances mm	$8 \pm 0.5/10 \pm 0.5$
Length, max	3050 mm
Width, max	1250 mm
Density, nominal and tolerances	$1200 \text{ kg/m}^3 \pm 100$
Bending strength, length and	$f_{05} \ge 34,5 \text{ N/mm}^2$
width	
Modulus of elasticity N/mm ²	$m(E) \ge 5260$
Thermal conductivity	0,43 W/(m • K)
Cumulative dimensional change	Length: ≤ 0,096 %
according to EN 438-2	Width: $\leq 0.098 \%$
Coefficient of thermal expansion,	$\alpha = 11.0 \ (10^{-6} \mathrm{K}^{-1})$
length and width	$\alpha = 11,0 (10^{\circ} \text{ K})$
Coefficient of moisture expansion	\leq 0,324 mm/m after
23° C/50% RH to 92% RH	4 days

Finishes

The boards are not supplied with an organic or inorganic finish which allows a natural weathering and colouration of the surface of the boards.

Subframes

The panels are attached to the building by fixing to a subframe of aluminum, steel or wood.

The vertical battens should have a minimum thickness of 28 mm (solid wood).

Also LVL battens (Laminated Veneer Lumber) with a minimum thickness of 27 mm, according to EN 14374, can be used (Ultralam R, CE 0672-CPD-I)

Appropriate preservative treatment of wooden subframes

Use the appropriate part of EN 335 to identify the "use class" of a given service environment and geographical location. Table 1 in EN 335 will assist in determining the biological agents that can attack timber in certain situations. The user can then consider the type and duration of performance required, select an appropriate level of durability and ensure that the timber or wood-based product specified has either, as a natural (see EN 350-2) or an acquired characteristic durability as the result of appropriate preservative treatment (see EN 351-1).

The minimum thickness of the vertical aluminum profiles is 1,5 mm. The aluminum is AW-6060 according to EN 755-2. The $R_m/R_{p0,\,2}$ values is 170/140 for profile T6 and 195/150 for profile T66.

The minimum thickness of the vertical steel profiles is either 1,0 mm $_{\rm [a]}$ (steel quality is S320GD +Z EN 10346 number 1.0250, or equivalent for cold forming), or 1,5 mm

[a] (steel quality EN 10025-2:2004 S235JR number 1.0038).

[a] The minimum coating thickness (Z or ZA) is determined by the corrosion rate (amount of corrosion loss in thickness per year) which depends on the specific outdoor atmospheric environment.

The Zinc Life Time Predictor can be used to calculate the Corrosion Rate in μ m/y for a Z coating: http://www.galvinfo.com:8080/zclp/ [copyright The International Zinc association].

The coating designation (classification which determines the coating mass) shall be agreed between the contractor and the building owner.

Alternatively a hot dip galvanized coating according to EN ISO 1461 can be used.

Joints

Aluminum profiles

The horizontal joints between the panels can be open in the case of ROCKPANEL strips or EPDM foam gasket. The strips or gasket are 15 mm wider than the batten at both sides.

The horizontal joints between the panels are made with a ROCKPANEL 'A' extruded aluminum chair profile or equivalent in the case of panels mechanically fixed on timber battens. The chair profile has an overlap of at least 15 mm on the board above the profile.

See Annex 1, Figure 1.

Foam gasket

A 3 mm thick EPDM foam gasket (self adhering backside) is fixed to the timber battens. If the horizontal joint is closed with an aluminum chair profile, the vertical joint is backed with the 60 mm wide gasket and for the intermediate battens the 36 mm gasket is used.

In the case of open horizontal joints the width of the gasket is 15 mm at both sides wider than the batten.

Fasteners

The panels are mechanically fixed either to vertical timber or metal subframe.

The mechanical fastening to timber battens is carried out with either ROCKPANEL stainless steel screws 4.5×35 mm no 1.4401 or 1.4578 (EN 10088) with heads in the colour of the panels or ROCKPANEL ring shank nails $2.7/2.9 \times 32$ or 40 mm no 1.4401 or 1.4578 (EN 10088) with heads in the colour of the panels.

Fastening to aluminum is carried out with aluminum EN AW-5019 (AIMg5) rivets, head diameter 14 mm, shank diameter 5 mm, head colour coated (for correct fixing, a riveting tool with rivet spacer must be used), see Annex 3-1.

Fastening to steel is carried out with stainless steel EN 10088 no 1.4578 rivets head diameter 15 mm or EN 10088 no. 1.4567 rivets, head diameter 14 mm, shank

diameter 5 mm, head colour coated. (for correct fixing, a riveting tool with rivet spacer must be used), see Annex 3-1.

The maximum fixing distances, edge distances and hole dimensions appear from Annex 2-1 of the ETA.

The design value of the axial load appears from Annex 2-2 up to and including 2-9, Tables 6 up to and including 13.

The installation method with the use of fixed points and moving points appears from Annex 2-1, Table 5 and Figure 3.

2 Specification of the intended use in accordance with the applicable EAD

The boards are intended for external cladding and for fascias and soffits. The cladding on vertical timber battens with mechanically fixed boards can be carried out with ventilated cavities at the back. See Annex 1 Figure 1.

The cladding on vertical aluminum or steel support shall be carried out with a ventilated cavity at the back. See Annex 1 Figure 2.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the kit of 25 years for regions with a mean annual radiant exposure not exceeding 5 GJ/m², provided that they are subject to appropriate use and maintenance. EOTA Technical Report 010 contains the map of Europa with the mean annual radiant exposure by global solar radiation: http://www.eota.be/en-GB/content/technical-reports/11/

In addition, for aluminum support systems intended to be used for facades:

In some member states national climate conditions may reduce the service life of the aluminum support system to 35 years or more.

An additional assessment of the aluminum support system might be necessary to comply with Member State regulations or administrative provisions.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

Characteristic

Assessment of characteristic

3.2	Safety in case of fire (BWR 2)	
	Reaction to fire of the board in its intended use as a cladding kit	
		The aluminum and steel profiles are classified as Euroclass A1
		Classification of panels: See Table 3

The panels have been classified in accordance with EN 13501-1 with the following parameters:

Table 3 Eurocla	ass classification of different construction	s with ROCKPANEL bo	ards	
Fixing method	Ventilated		oden subframe nposition / thicknesses	
		'Durable' 8 mm	'Xtreme' 10 mm	
Mechanically fixed	Ventilated with EPDM gasket on the battens [a]		B-s2,d0 6 mm horizontal joint	

[[]a] width of the gasket 15 mm at both sides wider than the batten

Field of application

Further to the limitations described in section 1 of the ETA, the following field of application applies.

Euroclass classification

The classification mentioned in Table 3 is valid for the following end use conditions:

Mounting:

- Mechanically fixed as described in Table 3, which are attached to the subframe mentioned below
- The panels are backed with min. 50 mm mineral wool insulation with density 30-70 kg/m³ according to EN 13162 with a cavity between the panels and the insulation (mechanically fixed)

Substrates:

Concrete walls, masonry walls

Insulation:

- Ventilated constructions: The battens are backed with min. 50 mm mineral wool insulation with density 30-70 kg/m³ with an air gap of min. 28 mm between the panels and the insulation
- Results are also valid for all greater thickness of mineral wool insulation layer with the same density and the same or better reaction to fire classification
- Results are also valid for the panels without insulation, if the substrate chosen according to EN 13823 is made of panel with Euro-class A1 or A2 (e.g. fibre-cement panels)

Subframe:

- Vertical softwood battens without fire retardant treatment, thickness minimum 28 mm
- Test results are also valid for the same type of panel with aluminum or steel frame
- Test results are also valid for the same type of panel with vertical LVL battens, without fire retardant treatment, thickness minimum 27 mm

Fixings:

- Results are also valid with higher density of the fixing devices
- Test results are also valid for the same type of panel fixed by rivets made of the same material of screws and vice versa

Cavity:

- Unfilled
- The depth of the cavity is minimum 28 mm

• Test results are also valid for other higher thickness of air space between the back of the board and the insulation

Joints:

- Vertical joints are with an EPDM foam gasket backing as described in Table 3 and horizontal joints can be open or with an aluminum profile
- Test results are also valid in the case of using 6 mm ROCKPANEL strips instead of EPDM foam gaskets
- Test results are also valid for higher thicknesses of ROCKPANEL strips
- The result from a test with an open horizontal joint is also valid for the same type of panel used in applications with horizontal joints closed by steel or aluminum profiles

The classification is also valid for the following product parameters:

Thickness:

- Nominal 8 mm, individual tolerances \pm 0,5 mm
- Nominal 10 mm, individual tolerances \pm 0,5 mm

Density

- Nominal 1050 kg/m³, individual tolerances -150 / +150 kg/m³
- Nominal 1200 kg/m³, individual tolerances -100 / +100 kg/m³

Hygiene, health and the environment (BWR 3)					
Content, emission and/or release of dangerous substances					
	Use category: Outdoor S/W2				
	The kit does not contain/release dangerous substances				
	specified in TR 034, dated April 2013*), except				
	Formaldehyde concentration 0,0105 mg/m³ Formaldehyde class E1				
	The used fibres are not potential carcinogenic				
	No biocides are used in the ROCKPANEL boards				
	No flame retardant is used in the boards				
	No cadmium is used in the boards.				
Water vapour permeability					
	'Natural' all versions: $s_d < 0.20 \text{ m}$ at 23 °C and 85% RH				
	The designer shall consider the relevant needs for ventilation, heating and insulation to minimise condensation in service.				
Water tightness of joints					
	No performance determined				
Drainability					
	See section 'Aspects related to the performance of the product'				

^{*)} In addition to the specific clauses relating to dangerous substances contained in this European Technical Assessment, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the EU Construction Products Directive, these requirements need also to be complied with, when and where they apply.

3.4 Safety and accessibility in use (BWR 4)

Wind load resistance

Mechanical properties of panels

See section 1, Table 1 and Table 2

Design value of axial loads

In absence of national regulations the design values X_d may be calculated as indicated in the ETA (see tables 6 up to and including 13). Below is mentioned the safety factors which has been used in the calculation of the design values.

Fixing position and design value X_d of the axial load M/E/C (Middle/Edge/Corner) of mechanical fixings corresponding to the wind load resistance (load acting perpendicular to the façade)

Remark:

Design value X_d obtained by dividing the characteristic value X_k by a partial factor γ_M : $X_d = X_k / \gamma_M$ The design value X_d of a material property can be expressed in general terms as $X_d = \eta \times X_k / \gamma_m$; γ_m ROCKPANEL = 1,6; conversion factor $\eta = 0.8$ (aged bending strength divided by the f_{05} (Table 17, Annex 4-2))

ROCKPANEL rivets (both 'Durable' and 'Xtreme'):

'Natural' 10 mm to an aluminum subframe, design value X_d : **654/309/156 N**

See Annex 2-2 Table 6 row (16)

ROCKPANEL screws (both 'Durable' and 'Xtreme'):

Design value X_d depends on the modification factor k_{mod} , the strength class of the wood and the different material factors γ_M . 'Natural' 8 mm boards to a wooden subframe: see Annex 2-3 Table 7 and Annex 2-4 Table 8 rows (25), (26) and (27).

'Natural' 10 mm boards to a wooden subframe: see Annex 2-5 Table 9 and Annex 2-6 Table 10 rows (25), (26) and (27).

ROCKPANEL nails (both 'Durable' and 'Xtreme'):

Design value X_d depends on the modification factor k_{mod} , the strength class of the wood and the different material factors γ_M . 'Natural' 8 mm boards to a wooden subframe see Annex 2-7 Table 11, row (25), (26) and (27).

'Natural' 10 mm boards to a wooden subframe see Annex 2-8 Table 12 and Annex 2-9 Table 13 rows (25), (26) and (27).

Characteristic

Assessment of characteristic

Pull/out and pull/through resistance of fasteners and mechanical resistance of boards

Pull-out resistance of fasteners

ROCKPANEL screws:

Fastener specification according to Table 15.

Characteristic withdrawal capacity F_{ax}:

'Natural Durable' 8 mm and 'Natural Xtreme' 8 mm, with the use of a gasket:

Annex 2-3 Table 7 row (15) and (16)

'Natural Durable' 8 mm and 'Natural Xtreme' 8 mm, with the use of a 8 mm strip:

Annex 2-4 Table 8 row (15) and (16)

'Natural Durable' 10 mm and 'Natural Xtreme' 10 mm, with the use of a gasket:

Annex 2-5 Table 9 row (15) and (16)

'Natural Durable' 10 mm and 'Natural Xtreme' 10 mm, with the use of a 8 mm strip:

Annex 2-6 Table 10 row (15) and (16)

Design value X_d depends on the modification factor k_{mod} , the strength class of the wood and the material factor γ_M .

Row (23) and (24) in Table 7, 8, 9 and 10 contain the design value X_d of the axial withdrawal capacity for both strength classes C18 and C24

ROCKPANEL nails:

Fastener specification according to according to Table 15.

Characteristic withdrawal capacity F_{ax}:

'Natural Durable' 8 mm and 'Natural Xtreme' 8 mm, 32 mm nail with the use of a gasket:

Annex 2-7 Table 11 row (15) and (16)

'Natural Durable' 8 mm and 'Natural Xtreme' 8 mm, 40 mm nail with the use of a strip:

Annex 2-8 Table 12 row (15) and (16)

'Natural Durable' 10 mm and 'Natural Xtreme' 10 mm, 40 mm nail with the use of a gasket: Annex 2-9 Table 13 row (15) and (16)

Design value X_d depends on the modification factor k_{mod} , the strength class of the wood and the material factor γ_M .

Row (22) and (23) in Table 11, 12 and 13 contain the design value X_d of the axial withdrawal capacity for both strength classes C18 and C24.

Rivets

Fastener specification according to Table 14.

Characteristic withdrawal capacity

'Natural Durable' 10 mm and 'Natural Xtreme' 10 mm: Annex 2-2 Table 6 row (13)

Pullthrough resistance of boards

ROCKPANEL screws:

Fastener specification according to Table 15.

Characteristic pull-through:

'Natural Durable' 8 mm and 'Natural Xtreme' 8 mm:

Annex 2-3 Table 7 and Annex 2-4 Table 8 row (4)

'Natural Durable' 10 mm and 'Natural Xtreme' 10 mm:

Annex 2-5 Table 9 and Annex 2-6 Table 10 row (4)

Row (6) in these tables contain the design value of the pull-through resistance for the different fixing locations.

ROCKPANEL nails:

Fastener specification according to table 15

'Natural Durable' 8 mm and 'Natural Xtreme' 8 mm:

- characteristic pull-through:

Annex 2-7 Table 11 and Annex 2-8 Table 12 row (4)

'Natural Durable' 10 mm and 'Natural Xtreme' 10 mm:

- characteristic pull-through:

Annex 2-9 Table 13 row (4)

Row (6) in these tables contains the design value of the pull-through resistance for the different fixing locations.

Rivets

Fastener specification according to Table 14.

'Natural Durable' 10 mm and 'Natural Xtreme' 10 mm:

- characteristic pull-through: Annex 2-2 Table 6 row (4)

Characteristic

Assessment of characteristic

Wind suction and pressure resistance

Resistance to wind load M/E/C

Average strength N **Rivets: 1449 / 617 / 311** (according to Annex 2-2 Table 6)

10 mm 'Natural Durable' and 'Xtreme' Screws: 1105 / 482 /236 (according to Annex 2-5 Table 9 and Annex

2-6 Table 10)

Nails: 1009 / 627 / 397 (according to Annex 2-9 Table 13)

Average strength N **Screws: 902 / 363 / 222** (according to Annex 2-3 Table 7)

8 mm 'Natural Durable' and 'Xtreme' Nails: 716 / 314 / 263 (according to Annex 2-7 Table 11 and Annex

2-8 Table 12

Average failure load N/mm²: **Rivets: 2567/2769 / 2958** (according to Annex 2-2 Table 6)

10 mm 'Natural Durable' and 'Xtreme' Screws: 1992 / 2161 / 2243 (according to Annex 2-5 Table 9 and

Annex 2-6 Table 10)

Nails: 2637 / 4131 / 5162 (according to Annex 2-9 Table 13)

Screws: 4980 / 5412 / 5547 (according to Annex 2-3 Table 7) Average failure load N/mm²: 8 mm 'Natural Durable' and 'Xtreme'

Nails: 3043 / 3406 / 5148 (according to Annex 2-7 Table 11 and

Annex 2-8 Table 12

Mechanical resistance

Characteristic shear strength mechanical

fixings

Average values

ROCKPANEL nails (both 'Durable' and 'Xtreme'):

'Natural' 8 mm Failure load: 1062 N Deformation: 12 mm

'Natural' 10 mm Failure load: 1325 N Deformation: 15 mm

ROCKPANEL rivets (both 'Durable' and 'Xtreme'):

'Natural' 10 mm Failure load: 1722 N Deformation: 1,7 mm

ROCKPANEL screws (both 'Durable' and 'Xtreme'):

'Natural' 8 mm Failure load: 1182 N Deformation: 8 mm

'Natural' 10 mm Failure load: 1549 N Deformation: 9 mm

Impact resistance [a]

'Natural Durable' and 'Xtreme' 8 mm Panels with and without a horizontal

joint.

Hard body impact - steel ball 0,5 kg (3J): Category III, II and I

Soft body impact 3 kg (10J): Category IV and III

'Natural Durable' 10 mm

Panels without a horizontal joint

Hard body impact - steel ball 0,5 kg (1J): Category IV

Hard body impact – steel ball 0,5 kg (3J): Category III, II and I

Hard body impact – steel ball 1 kg (10J): Category II and I

Soft body impact 3 kg (10J): Category IV and III Soft body impact 3 kg (60J): Category II and I

Soft body impact 50 kg (300J): Category II

'Natural Durable' 10 mm

Panels with a horizontal joint ready accessible and vulnerable to impacts Hard body impact - steel ball 0,5 kg (1J): Category IV

Hard body impact – steel ball 0,5 kg (3J): Category III, II and I

'Natural Xtreme' 10 mm

Panels without a horizontal joint

Hard body impact - steel ball 0,5 kg (1J): Category IV

Hard body impact – steel ball 0,5 kg (3J):Category III, II and I

Hard body impact – steel ball 1 kg (10J): Category II and I

Soft body impact 3 kg (10J): Category IV and III Soft body impact 3 kg (60J): Category II and I

Soft body impact 50 kg (300J): Category II Soft body impact 50 kg (400J): category I

'Natural Xtreme' 10 mm

Panels with a horizontal joint ready accessible and vulnerable to impacts Hard body impact - steel ball 0,5 kg (1J): Category IV Hard body impact - steel ball 0,5 kg (3J):Category III, II and I

Hard body impact – steel ball 1 kg (10J): Category II and I Soft body impact 3 kg (10J): Category IV and III Soft body impact 3 kg (60J): Category II and I

Soft body impact 50 kg (300J): Category II

[a] For definition of use category see Annex 6 Table 19

Characteristic	Assessment of characteristic
Hygrothermal behaviour	
Resistance to Hygro-thermal cycles	Pass
Dimensional stability	
Cumulative dimensional change %	'Durable' - Length: 0,085 / width: 0,084 'Xtreme' - Length: 0,096 / width: 0,098
Coefficient of thermal expansion 10 ⁻⁶ K ⁻¹	'Durable' - Length: 10,5 / width: 10,5 'Xtreme' - Length: 11,1 / width: 10,8
Coefficient of moisture expansion 42% RH difference after 4 days mm/m	'Durable' - Length: 0,288 / width: 0,317 'Xtreme' - Length: 0,320 / width: 0,328
Resistance to Xenon Arc exposure	Pass

Aspects related to the performance of the product

All materials shall be manufactured by ROCKWOOL B.V. or by subcontractors under the responsibility of ROCKWOOL B.V. / ROCKPANEL Group

The European Technical Assessment is issued for the product on the basis of agreed data/information, deposited with ETA-Danmark, which identifies the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to ETA-Danmark before the changes are introduced. ETA-Danmark will decide whether or not such changes affect the ETA and consequently the validity of the CE marking on the basis of the ETA and if so whether further assessment or alterations to the ETA, shall be necessary.

Installation details and application details for the man on site are given by ROCKWOOL B.V. in the manufacturer's application guide technical dossier, which forms part of the documentary material for this ETA. On every pallet label the website is printed which guides the end user to the most actual information.

For non-ventilated use, the substrate shall be airtight.

The boards are in general mounted with a joint width of between 5 and 8 mm.

If the joints are to be sealed, only durable sealants should be used with a good adhesion on the edges of the boards and a good UV-stability. To prevent sticking to the subframe, a PE-film or tape can be used.

The cladding kit shall be designed and installed so that water which penetrates in the air space or condensation water shall be drained out of the installed kit without accumulation or moisture damage or leakage into the substrate or the wall cladding kit

The boards for external cladding shall not be fixed over building or settlement joints. Where settlement joints are located in the building the same movements of the building and substructure shall be possible in the external cladding.

The water diffusion resistance of the boards is declared as a means for the designer to decide whether they are sufficiently vapour permeable, especially when used for cladding without ventilated cavities at the back. The designer can then establish that condensation in the entire wall as a result of water vapour diffusion will not occur or will occur only to an extent where damage is not caused during the condensation period and the wall will dry out again during the evaporation period. The designer shall consider the critical moisture content for all the integrated materials.

For non-ventilated intended use, the pressure level preceding the pressure level where leakage occurs is declared as a means for the designer to decide on the necessity of the use of a vapour control membrane.

The panels should not be taken into account when designing a timber stud wall to resist racking forces.

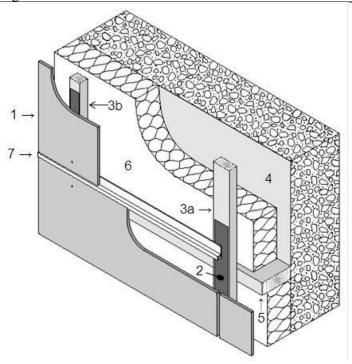
The holes for the fixings are drilled into the panels not less than 15 mm (8 mm boards) or 20 mm (10 mm boards) from a vertical edge and 50 mm from a horizontal edge (see Annex 2-1). The panels are fixed making sure that the screws are not over-tightened.

4 Attestation and verification of constancy of performance (AVCP)

4.1 AVCP system

According to the decision 2003/640/EC of the European Commission as amended, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1, since there is a clearly identifiable stage in their production which results in an improvement of fire performance due to the limiting of organic material.

5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark

Issued in Copenhagen on 2015-11-02 by

Thomas Bruun Managing Director, ETA-Danmark

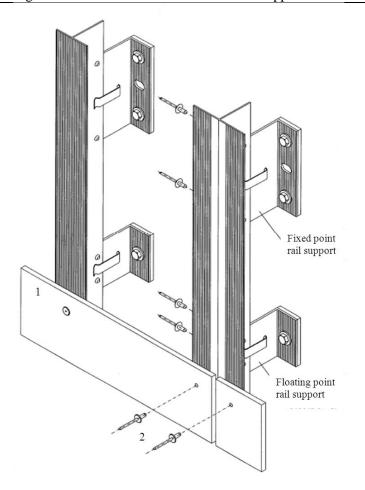
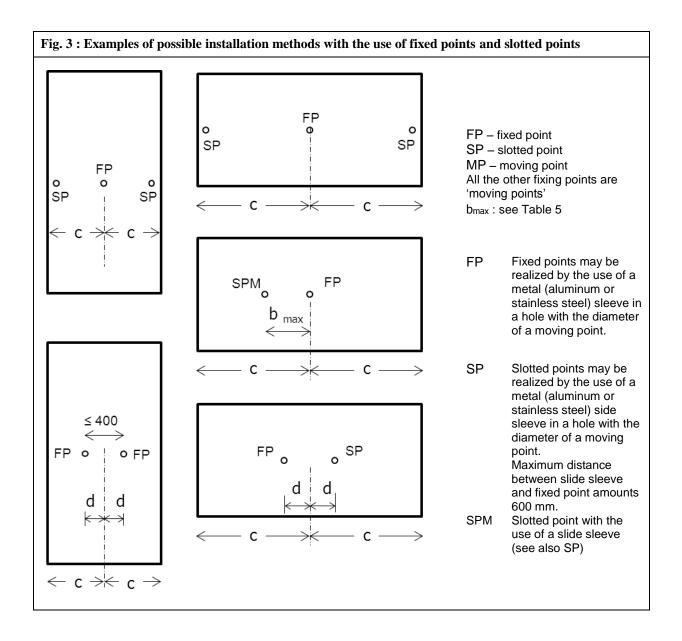

Annex 1 Pre-fabricated compressed mineral wool boards with organic or inorganic finish

Figure 1. Ventilated intended use on vertical timber battens

- 1. Compressed mineral wool board
- 2. EPDM foam gasket
- 3. Subframe:a joint batten andb intermediate batten
- 4. Vapour barrier
- 5. Timber beam
- 6. Insulation
- 7. ROCKPANEL 'A' 8 mm aluminum chair profile or equivalent

Figure 2. Ventilated use on vertical metal support

- 1. Compressed mineral wool board with organic or inorganic finish
- 2. Rivet fixing


Annex 2-1

Minimum edge distances, hole diameter and maximum characteristic and design loads

Table 4 Min	imum edge d	listances and	l maximum	distances be	tween faster	nings in mm	<u>l</u>
a ₁ b		b a ₁	12	Fixing loca	ations concer at intermedia at edge	rning loads	
Fixing type	b _r	nax	a	max	г	\mathfrak{i}_1	a_2
	8 mm	10 mm	8 mm	10 mm	8 mm	10 mm	8/10
Rivet [a]		600		600		20	50
Screw	400	600	300	600	15	20	50
Nail	480	600	300	400	15	20	50

[[]a] For correct fixing, a riveting tool with rivet spacer must be used

Table 5 : Po	sitioning fi	xing points a	and hole	dimensi	ons [mm]	
0 0	0 0			F		Fixed point [a]
	F O -			S		Slotted point [a]
s				All other positions		Moving points [a]
	0	a ₂		Edge dis	tances a ₁ and a ₂ in acc	cordance with Table 4
Fixing type	Fixed	Moving		d points Board dimension considered width * length		
8 31	point	point	horize	ontally	'Durable'	'Xtreme'
Screw	3,2	6,0	3,4	x 6,0	1250 * 3050	1250 * 2900 [b]
Nail	Nail 2,5 4,0 2,8		x 4,0	1250 *1600 [b]	1250 * 1400 [b]	
Rivet [a]	5,1	8,0	5,1	x 8,0	1250 * 3050	1250 * 3050
[a] For correct fixi [b]: In the case of					ension between shaft and p	anel-hole may occur.

Design values X_d of the **mechanical** fixings rivet, screw and nail.

In absence of national regulations the design values X_d may be calculated as indicated in the ETA (see tables 6 up to and including 13). In these tables the safety factors are mentioned which have been used in the calculation of the design values.

Characteristic fixing load of a rivet fixing

The characteristic fixing loads which may be taken for the combination rivet and 10 mm ROCKPANEL 'Natural Durable' and 10 mm ROCKPANEL 'Natural Xtreme' boards, for the position M, E or C, are given in Table 6 row (4), (9) and (13).

Table 6:	Characteristic axial load X_k and design combination rivet [a] and 10 mm 'Natur				ards
board thick	ness		10 mm		(1)
location of	the fixing in the board	M-middle	E-edge	C-corner	(2)
pull-throug	h N				(3)
	characteristic pull-through N	1308	810	540	(4)
	material factor ROCKPANEL γ _M (manufacturer's declaration)	2,0	2,0	2,0	(5)
	design value X_d of the pull-through N	654	405	270	(6)
wind suctio	on .				(7)
	average wind load in N/m ²	2567	2769	2958	(8)
	average strength N	1449	617	311	(9)
	material factor ROCKPANEL γ _M (manufacturer's declaration)	2,0	2,0	2,0	(10)
	design value X_d of the pull-through N	725	309	156	(11)
pull-out stre					(12)
	manufacturer's declaration N	1300	1300	1300	(13)
	material factor aluminum γ _M	1,3	1,3	1,3	(14)
	design value X_d of the pull-out N	1000	1000	1000	(15)
•	e of the axial load $X_d = X_k / \gamma_M$ for the n rivet and 10 mm boards	654	309	156	(16)
	board span b		600		(17)
	fixing distance a		600		(18)

[[]a] For correct fixing, a riveting tool with rivet spacer must be used

Characteristic fixing load of a screw fixing

The characteristic fixing loads which may be taken for the combination screw and 8 mm ROCKPANEL 'Natural Durable' or ROCKPANEL 'Natural Xtreme' boards, for the position M, E or C, are given in Table 7 and 8:

- for strength class C18 row (4), (9) and (15)
- for strength class C24 row (4), (9) and (16)

The characteristic fixing loads which may be taken for the combination screw and 10 mm ROCKPANEL 'Natural Durable' or ROCKPANEL 'Natural Xtreme' boards, for the position M, E or C, are given in Table 9 and 10:

- for strength class C18 row (4), (9) and (15)
- for strength class C24 row (4), (9) and (16)

Annex 2-2 continued

Characteristic fixing load of a nail fixing

The characteristic fixing loads which may be taken for the combination nail 32 mm and 8 mm ROCKPANEL 'Natural Durable' or 8 mm ROCKPANEL 'Natural Xtreme' boards, for the position M, E or C, are given in Table 11:

- for strength class C18 row (4), (9) and (15)
- for strength class C24 row (4), (9) and (16)

The characteristic fixing loads which may be taken for the combination nail 40 mm and 8 mm ROCKPANEL 'Natural Durable' or 8 mm ROCKPANEL 'Natural Xtreme' boards, for the position M, E or C, are given in Table 12:

- for strength class C18 row (4), (9) and (15)
- for strength class C24 row (4), (9) and (16)

The characteristic fixing loads which may be taken for the combination nail 40 mm and 10 mm ROCKPANEL 'Natural Durable' or 10 mm ROCKPANEL 'Natural Xtreme' boards, for the position M, E or C, are given in Table 13:

- for strength class C18 row (4), (9) and (15)
- for strength class C24 row (4), (9) and (16)

	ble 7: Characteristic ax							
	r the combination screw			mm 'Natural	Xtreme' board	S		
	ith the use of gaskets), v	with $\alpha \ge 30$) ° [e]					
	ard thickness				(with the use of			
	eation of the fixing in the b	oard		M-middle	E-edge	C-corner		
pu	ll-through N				1.50			
	characteristic pull-throu			668	460	340		
	material factor ROCKF			2,0	2,0	2,0		
	design value X_d of the p	oull-throug	h N	334	230	170		
wi	nd suction							
	average wind load in N	/m²		4980	5412	5547		
	average strength N			902	363	222		
	material factor ROCKF	PANEL 7M	(manufacturer's declaration)	2,0	2,0	2,0		
	design value X_d of the 1	oull-throug	h N	451	182	111		
wi	thdrawal capacity							
	characteristic withdrawa	l capacity I	F _{ax,k,Rk} [b] [c] [d]					
	strength class	C18	$\rho_k = 320 \text{ kg/m}^3$	858[b]	858[b]	858[b]		
	wood (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	922 [b]	922 [b]	922 [b]		
		mo	dification factor for k _{mod}		$k_{mod}\left[a\right]$			
	axial withdrawal capacit	y F _{ax,k,Rk} .k	a _{mod} [a] [b] [c] [d]					
	strength class	C18	$\rho_k = 320 \text{ kg/m}^3$	$858 \cdot k_{mod}$	858 • k _{mod}	858 • k _{mod}		
	wood (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	922 • k _{mod}	922 • k _{mod}	922 • k _{mod}		
	material factor (NA	to) EN 199	95-1-1:2004+A1:2008	$\gamma_{\rm M} = 1$,	30 [withdrawal o	capacity]		
	design value X_d of the ax	ial withdra	wal capacity N					
	strength class	C18	$\rho_k = 320 \text{ kg/m}^3$	660 • k _{mod}	660 • k _{mod}	660 • k _{mod}		
	wood (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	709 • k _{mod}	709 • k _{mod}	709• k _{mod}		
de	sign value of the axial loa	$\mathbf{d} \; \mathbf{X}_d = X_k / $	γ _M N	minin	num value of th	e rows:		
	strength class	C18	(3) (7) (15)	(3) (7) (15)	(3) (7) (15)			
	wood (EN 338) $C24$ $\rho_k = 350 \text{ kg/m}^3$ (3) (7) (16) (3) (7) (16) (3) (7) (16)							
	board span b			400				
	fixing distance a				300			

[[]a]: modification factor k_{mod} depends on the service class (humidity conditions) and the load-duration class according to the National Annex of EN 1995-1-1

[[]b]: with reduced thread diameter to fulfil the minimum l_{ef} demand ($d = l_{ef}/6 = 24,75/6 = 4,12 \text{ mm}$);

[[]c]: angle α between shaft and the wood grain: $\alpha \ge 30^{\circ}$

[[]d]: calculation in accordance with EN 1995-1-1+C1+A1:2008 formula (8.38), (8.39) and (8.40)

[[]e]: α is the angle between the screw axis and the grain direction

(WIUI	the use of 0 mm DO	CKDANE	n 'Natural Durable' or 8 L strips), with α≥ 30° [6			
`	thickness	CKPANE	L surps), wrun $\alpha \ge 30^{\circ}$ [6]		ith the use of a 8	R mm strin)
	on of the fixing in the b	oard		M-middle	E-edge	C-corner
	nrough N				\mathcal{C}	
(characteristic pull-throu	ıgh N		668	460	340
_1	naterial factor ROCKP	PANEL 7M	(manufacturer's declaration)	2,0	2,0	2,0
(design value X_d of the p	oull-through	ı N	334	230	170
wind a	suction					
ŧ	average wind load in N	/m²		4980	5412	5547
8	average strength N			902	363	222
	naterial factor ROCKP			2,0	2,0	2,0
(design value X_d of the p	oull-through	ı N	451	182	111
withd	rawal capacity					
cl	haracteristic withdrawa	ıl capacity I	F _{ax,k,Rk} [b] [c] [d]			
	strength class	C18	$\rho_k = 320 \text{ kg/m}^3$	336 [b]	336 [b]	336 [b]
	wood (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	361 [b]	361 [b]	361 [b]
		mo	dification factor for k _{mod}		k _{mod} [a]	
a	xial withdrawal capacit	ty F _{ax,k,Rk} . 1	K _{mod} [a] [b] [c] [d]			
	strength class	C18	$\rho_k = 320 \text{ kg/m}^3$	336 • k _{mod}	336 • k _{mod}	336 • k _{mod}
	wood (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	361 • k _{mod}	361 • k _{mod}	361 • k _{mod}
	material factor (NA	to) EN 199	95-1-1:2004+A1:2008	$\gamma_{\rm M}$ = 1,30 [withdrawal capacity]		
d	esign value X_d of the a	xial withdra	wal capacity N			
	strength class	C18	$\rho_k = 320 \text{ kg/m}^3$	258 • k _{mod}	258 • k _{mod}	258 • k _{mod}
	wood (EN 338)	C24	$\rho_{k} = 350 \text{ kg/m}^{3}$	278 • k _{mod}	278 • k _{mod}	278 • k _{mod}
desig	n value of the axial loa	ad $X_d = X_k$	′ γм N	minin	num value of th	e rows:
st	rength class	C18	$\rho_k = 320 \text{ kg/m}^3$	(6) (12) (23)	(6) (12) (23)	(6) (12) (23)
W	rood (EN 338)	C24	$\rho_k = 330 \text{ kg/m}^2$	(0)(12)(24)	(0) (12) (24)	(6) (12) (24)

[[]a]: modification factor k_{mod} depends on the service class (humidity conditions) and the load-duration class according to the National Annex of EN 1995-1-1

300

(29)

fixing distance a

[[]b]: with reduced thread diameter to fulfil the minimum l_{ef} demand ($d = l_{ef}$ / 6 = 16,75/6 = 2,79 mm);

[[]c]: angle α between shaft and the wood grain: $\alpha \geq 30^{\circ}$

[[]d]: calculation in accordance with EN 1995-1-1+C1+A1:2008 formula (8.38), (8.39) and (8.40)

[[]e]: α is the angle between the screw axis and the grain direction

			and design value of the			
			ım 'Natural Durable' or <i>'</i>	I0 mm 'Natura	l Xtreme' board	ls
	use of gaskets), v	with $\alpha \ge 3$	0° [e]			
board thick					(with the use of	
	the fixing in the b	oard		M-middle	E-edge	C-corner
pull-throug	gn N cteristic pull-throu	ah M		1066	850	617
				2,0	2,0	2,0
			(manufacturer's declaration)	533	425	309
	n value X_d of the p	oun-unrougi	II IN	555	425	309
wind suction		/ ?		1002	21.61	22.42
	ge wind load in Na ge strength N	'III'		1992 1105	2161 482	2243 236
<u> </u>		ANIEL	(2,0	2,0	2,0
	n value X_d of the p		(manufacturer's declaration)	553	2,0	118
		oun-unougi	II IN	555	241	110
withdrawal			_			
	teristic withdrawa				1	1
st	rength class	C18	$\rho_k = 350 \text{ kg/m}^3$	701 [b]	701 [b]	701 [b]
W	ood (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	753 [b]	753 [b]	753 [b]
		mo	odification factor for k_{mod}		k_{mod} [a]	
axial v	vithdrawal capacit	y F _{ax,k,Rk} .1	K _{mod} [a] [b] [c] [d]			
st	rength class	C18	$\rho_k = 350 \text{ kg/m}^3$	701 • k _{mod}	701 • k _{mod}	701 • k _{mod}
w	ood (EN 338)	C24	$\rho_{k} = 350 \text{ kg/m}^{3}$	753 • k _{mod}	753 • k _{mod}	753 • k _{mod}
m	aterial factor (NA	to) EN 199	95-1-1:2004+A1:2008	$\gamma_{\rm M} = 1,30$ [withdrawal capacity]		
design	value X_d of the ax	ial withdra	wal capacity N			•
	rength class	C18	$\rho_{k} = 350 \text{ kg/m}^{3}$	539 • k _{mod}	539 • k _{mod}	539 • k _{mod}
	ood (EN 338)	C24	$\rho_{k} = 350 \text{ kg/m}^{3}$	579 • k _{mod}	579 • k _{mod}	579 • k _{mod}
design va	lue of the axial	load $X_{d}=$	X _k / γ _M N		num value of th	
strengt	th class	C18	$\rho_k = 320 \text{ kg/m}^3$	(3) (7) (15)	(3) (7) (15)	(3) (7) (15)
wood	(EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	(3) (7) (16)	(3) (7) (16)	(3) (7) (16)
board span b				600		
fixing	g distance a				600	

[[]a]: modification factor k_{mod} depends on the service class (humidity conditions) and the load-duration class according to the National Annex of EN 1995-1-1

[[]b]: with reduced thread diameter to fulfil the minimum $l_{\it ef}$ demand ($d=l_{\it ef}$ / 6=22,75 / 6=3,79 mm);

[[]c]: angle α between shaft and the wood grain: $\alpha \geq 30^{\circ}$

[[]d]: calculation in accordance with EN 1995-1-1+C1+A1:2008formula (8.38), (8.39) and (8.40)

[[]e]: α is the angle between the screw axis and the grain direction

			X_k and design value of the			
			m 'Natural Durable' or		Xtreme' boar	ds
`		CKPANE	L strips), with $\alpha \ge 30^{\circ}$ [e	-	-	
	d thickness		,	th the use of a 8	1 /	
	ion of the fixing in the b	oard		M-middle	E-edge	C-corner
pull-	through N	1066	050	(17		
-	characteristic pull-thro			1066	850	617
-	material factor ROCKI			2,0	2,0	2,0
	design value X_d of the	oull-through	1 N	533	425	309
winc	l suction	T / 2		1002	1 01.1	2242
ŀ	average wind load in N/m ²			1992	2161	2243
-	average strength N			1105	482	236
-			(manufacturer's declaration)	2,0	2,0	2,0
*.1	design value X_d of the j	oun-unrough	1 IN	553	241	118
_	drawal capacity					
(characteristic withdrawal c	apacity F _{ax,k}	,Rk [b] [c] [d]			
	strength class	C18	$\rho_k = 320 \text{ kg/m}^3$	248 [b]	248 [b]	248 [b]
	wood (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	266 [b]	266 [b]	266 [b]
		mo	dification factor for k _{mod}	k _{mod} [a]		
	axial withdrawal capacit	y F _{ax,k,Rk} · k	L _{mod} [a] [b] [c] [d]			
	strength class	C18	$\rho_{k} = 350 \text{ kg/m}^{3}$	248 • k _{mod}	248 • k _{mod}	248 • k _{mod}
	wood (EN 338)	C24	$\rho_{\rm k} = 350 \; {\rm kg/m^3}$	266 • k _{mod}	266 • k _{mod}	266 • k _{mod}
	material factor (NA	to) EN 199	95-1-1:2004+A1:2008	$\gamma_{\rm M} = 1.30$ [withdrawal capacity]		
T-	design value X_d of the ax	ial withdra	wal capacity N			
	strength class	C18	$\rho_k = 350 \text{ kg/m}^3$	191 • k _{mod}	191 • k _{mod}	191 • k _{mod}
	wood (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	205 • k _{mod}	205 • k _{mod}	205 • k _{mod}
design value of the axial load $X_d = X_k / \gamma_M N$			minimum value of the rows:			
!	strength class	C18	$\rho_k = 350 \text{ kg/m}^3$	(6) (12) (23)	(6) (12) (23)	(6) (12) (23)
,	wood (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	(6) (12) (24)	(6) (12) (24)	(6) (12) (24)
	board span b			600		
fixing distance a			600			

[[]a]: modification factor k_{mod} depends on the service class (humidity conditions) and the load-duration class according to the National Annex of EN 1995-1-1

[[]b]: with reduced thread diameter to fulfil the minimum $l_{\it ef}$ demand ($d=l_{\it ef}$ / 6=16,75 / 6=2,79 mm);

[[]c]: angle α between shaft and the wood grain: $\alpha \geq 30^{\circ}$

[[]d]: calculation in accordance with EN 1995-1-1+C1+A1:2008formula (8.38), (8.39) and (8.40)

[[]e]: α is the angle between the screw axis and the grain direction

Table 11: Characteristic axial load X_k and **design** value of the axial load $X_d = X_k / \gamma_M$ for the combination 32 mm **nail** and 8 mm 'Natural Durable' or 8 mm 'Natural Xtreme' boards (with the use of gaskets)

(W1	th the use of gaskets)					
board thickness				8 mm (with the use of a gasket)		
loca	tion of the fixing in the	board		M-middle	E-edge	C-corner
pull	-through N					
	characteristic pull-thre			455	374	311
	material factor ROCK	PANEL 1/M	(manufacturer's declaration)	2,0	2,0	2,0
	design value X_d of the	pull-throug	228	187	156	
win	d suction					
	average wind load in	N/m²		3043	3406	5148
	average strength N			716	314	263
		(manufacturer's declaration)	2,0	2,0	2,0	
	design value X_d of the	pull-throug	h N	358	157	132
with	ndrawal capacity					
	characteristic withdraw	al capacity	Fax,k,Rk [b] [d]			
	strength class	C18	$\rho_k = 320 \text{ kg/m}^3$	168	168	168
	wood (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	201	201	201
		mo	odification factor for k _{mod}	k _{mod} [a]		
	axial withdrawal capac	ity F _{ax,k,Rk} .k	mod [a] [b] [d]			
	strength class	C18	$\rho_k = 320 \text{ kg/m}^3$	168 • k _{mod}	168 • k _{mod}	168 • k _{mod}
	wood (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	201 • k _{mod}	201 • k _{mod}	201 • k _{mod}
	material factor (NA	A to) EN 19	95-1-1:2004+A1:2008	$\gamma_{\rm M}$ = 1,30 [withdrawal capacity]		
	design value X_d of the	axial withdr	awal capacity N			
	strength class	C18	$\rho_k = 320 \text{ kg/m}^3$	129 • k _{mod}	129 • k _{mod}	129 • k _{mod}
	wood (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	155 • k _{mod}	155 • k _{mod}	155 • k _{mod}
design value of the axial load $X_d = X_k / \gamma_M N$			minimum value of the rows:			
	strength class	C18	$\rho_k = 320 \text{ kg/m}^3$	(6) (12) (23)	(6) (12) (23)	(6) (12) (23)
	wood (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	(6) (12) (24)	(6) (12) (24)	(6) (12) (24)
board span b				480		
	fixing distance a				300	

[[]a]: modification factor k_{mod} depends on the service class (humidity conditions) and the load-duration class according to the National Annex of EN 1995-1-1

[[]b]: with reduced thread diameter to fulfil the minimum l_{ef} demand ($d = l_{ef}/8 = 16,2/8 = 2,02 \text{ mm}$);

[[]d]: calculation in accordance with EN 1995-1-1:2004 + AC:2006 + A1:2008 formula (8.23 a)

Table 12 : Characteristic axial load X_k and design value of the axial load $X_d = X_k / \gamma_M$
for the combination 40 mm nail and 8 mm 'Natural Durable' or 8 mm 'Natural Xtreme' boards
(with the use of 8 mm ROCKPANEL strips)

(_	r			
board thickness				8 mm (wi	th the use of 8 mr	n strips)
	n of the fixing in the b	ooard		M-middle	E-edge	C-corner
	rough N					
c	haracteristic pull-thro	ugh N		455	374	311
n	naterial factor ROCK	PANEL 1/M	(manufacturer's declaration)	2,0	2,0	2,0
d	lesign value X_d of the	pull-throug	h N	228	187	156
wind si						
	verage wind load in N	J/m²		3043	3406	5148
	verage strength N			716	314	263
			(manufacturer's declaration)	2,0	2,0	2,0
	lesign value X_d of the	pull-throug	h N	358	157	132
withdra	awal capacity					
ch	aracteristic withdrawa	al capacity I	Fax,k,Rk [b] [d]			
	strength class	C18	$\rho_k = 320 \text{ kg/m}^3$	168	168	168
	wood (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	201	201	201
		n	nodification factor for k _{mod}	k _{mod} [a]		
ax	ial withdrawal capaci	ty F _{ax,k,Rk} · k	nod [a] [b] [d]			
	strength class	C18	$\rho_k = 320 \text{ kg/m}^3$	168 • k _{mod}	168 • k _{mod}	168 • k _{mod}
	wood (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	201 • k _{mod}	201 • k _{mod}	201 • k _{mod}
	material factor (NA	to) EN 1995	5-1-1:2004+A1:2008	$\gamma_{\rm M}$ = 1,30 [withdrawal capacity]		
de	sign value X _d of the a	xial withdra	wal capacity N			
	strength class	C18	$\rho_k = 320 \text{ kg/m}^3$	129 • k _{mod}	129 • k _{mod}	129 • k _{mod}
	wood (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	155 • k _{mod}	155 • k _{mod}	155 • k _{mod}
design value of the axial load $X_d = X_k / \gamma_M N$			minimum value of the rows:			
str	ength class	C18	$\rho_k = 320 \text{ kg/m}^3$	(6) (12) (23)	(6) (12) (23)	(6) (12) (23)
wo	ood (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	(6) (12) (24)	(6) (12) (24)	(6) (12) (24)
b	oard span b	1	-	480		
	ixing distance a				300	

[[]a]: modification factor k_{mod} depends on the service class (humidity conditions) and the load-duration class according to the National Annex of EN 1995-1-1

[[]b]: with reduced thread diameter to fulfil the minimum $I_{\rm ef}$ demand ($d=I_{\rm ef}/8=16,2/8=2,02$ mm);

[[]d]: calculation in accordance with EN 1995-1-1:2004 + AC:2006 + A1:2008 formula (8.23 a)

			d X_k and design value of the 10 mm 'Natural Durabl			oards
	the use of gaskets)	 u	nd 10 mm 1 tatarar Baraor	0 01 10 11111 140	itarar zarenie o	ourus
-	hickness			10 mm (with the use of a gasket)		
ocation of the fixing in the board				M-middle	E-edge	C-corner
	rough N					
	haracteristic pull-thro			752	674	577
_			/M (manufacturer's declaration)	2,0	2,0	2,0
	lesign value X_d of the	pull-thro	ough N	376	337	289
vind si						
	verage wind load in N		2637	4131	5162	
	average strength N			1009	627	397
			/M (manufacturer's declaration)	2,0	2,0	2,0
	lesign value X_d of the	pull-thro	ough N	505	314	199
withdra	awal capacity					
ch	aracteristic withdraw	al capacit	y F _{ax,k,Rk} [d]			
	strength class	C18	$\rho_k = 320 \text{ kg/m}^3$	296	296	296
	wood (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	354	354	354
		mo	odification factor for k _{mod}	k _{mod} [a]		
ax	ial withdrawal capaci	ty F _{ax,k,R}	. · k _{mod} [a] [d]			
	strength class	C18	$\rho_k = 320 \text{ kg/m}^3$	228• k _{mod}	228• k _{mod}	228• k _{mod}
	wood (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	272• k _{mod}	272• k _{mod}	272• k _{mod}
	material factor (NA	to) EN	995-1-1:2004+A1:2008	$\gamma_{\mathbf{M}} = 1$,	30 [withdrawal ca	pacity]
	design val	ue X_d of	the axial withdrawal capacity	N		
	strength class	C18	$\rho_k = 320 \text{ kg/m}^3$	228 • k _{mod}	228 • k _{mod}	228 • k _{mod}
	wood (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	272 • k _{mod}	272 • k _{mod}	272 • k _{mod}
design	value of the axial lo	ad $X_d = $	$X_k / \gamma_M N$	minim	um value of the	rows:
str	ength class	C18	$\rho_k = 320 \text{ kg/m}^3$	(6) (12) (23)	(6) (12) (23)	(6) (12) (23)
	ood (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	(6) (12) (24)	(6) (12) (24)	(6) (12) (24)
	oard span b				600	
fi	ixing distance a				400	

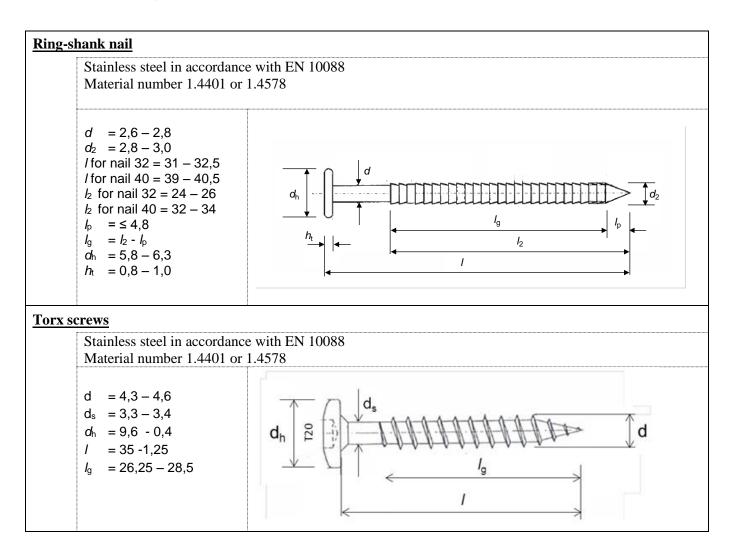
[a]: modification factor k_{mod} depends on the service class (humidity conditions) and the load-duration class according to the National Annex of EN 1995-1-1

[d]: calculation in accordance with EN 1995-1-1:2004 + AC:2006 + A1:2008 formula (8.23 a)

Annex 3-1

Table 14 - Fastener specification for metal subframes

num or stainless	steel			
	SFS	SFS Stainless	MBE	MBE stainless
9-0	Aluminum	steel A4 [a]	Aluminum	steel [b]
Code	AP14-50180-S	SSO-D15-50180	1290406	1290806
Body	aluminum EN	stainless steel	aluminum EN	stainless steel
	AW-5019	material number	AW-5019	material number
	(AlMg5) in	1.4578 in	(AlMg5) in	1.4567 in
	accordance with	accordance with	accordance with	accordance with
	EN 755-2	EN 10088	EN 755-2	EN 10088
Mandrel	stainless steel	stainless steel	stainless steel	stainless steel
d	material number	material number	material number	material number
*	1.4541 in	1.4541 in	1.4541 in	1.4541 in
1	accordance with	accordance with	accordance with	accordance with
	EN 10088	EN 10088	EN 10088	EN 10088
Pull-out	F _{mean,n} = 2038	$F_{\text{mean,n}} = 1428$	$F_{mean,10} = 2318$	$F_{mean,10} = 3212$
strength	s = 95	s = 54	s = 85	s = 83
-	F _{u,5} = 1882	$F_{u,5} = 1339$	$F_{u,5} = 2155$	F _{u,5} = 3052
d^1	5	5	5	5
d^2	14	15	14	14
d^3	2,7	2,7	2,7	2,95
1	18	18	18	16
k	1,5	1,5	1,5	1,5
profile	aluminum	steel	aluminum	steel
	t ≥ 1,5 mm	$t \ge 1,0 \text{ mm } [a]$	$t \ge 1.8 \text{ mm}$	$t \ge 1,5 \text{ mm [b]}$


- [a]: The minimum thickness of the vertical steel profiles is 1,0 mm. The steel quality is S320GD +Z EN 10346 number 1.0250 (or equivalent for cold forming). For minimum coating thickness see [c]
- [b]: The minimum thickness of the vertical steel profiles is 1,5 mm. The steel quality is EN 10025-2:2004 S235JR number 1.0038. For minimum coating thickness see [c]
- [c]: The minimum coating thickness (Z or ZA) is determined by the corrosion rate (amount of corrosion loss in thickness per year) which depends on the specific outdoor atmospheric environment (the Zinc Life Time Predictor can be used to calculate the Corrosion Rate in μ m/y for a Z coating: http://www.galvinfo.com:8080/zclp/(copyright The International Zinc association).

The coating designation (classification which determines the coating mass) shall be agreed between the contractor and the building owner.

Alternatively a hot dip galvanized coating according to EN ISO 1461 can be used.

Annex 3-2

Table 15 - Fastener specification for wooden subframes

Annex 4-1

Table 16 - Control plan for the manufacturer for the product 'Natural Durable'

10-	control plant for th	e manufacturer for	the product Tracular Dui	abic	
Nr	Subject/type of control	Test or control method	Criteria, if any	Minimum number of samples	Minimum frequency of control
(1)	(2)	(3)	(4)	(5)	(6)
			control (FPC) 'Natural Du n accordance with a prescr]¹
1	Board thickness	EN 325	8 ± 0,5 mm 10 ± 0,5 mm	40 [a]	One board for every 200 boards produced
2	Density	EN 323	$1050 \pm 150 \text{ kg/m}^3$	40 [a]	One board for every 200 boards produced
3	Bending strength dry parallel and perpendicular to the production direction	EN 310	$f_{05} \geq 27 \ \text{N/mm}^2$	20 (length) + 20 (width) [a]	One board for every 200 boards produced
4	Bending strength after ageing parallel and perpendicular to the production direction	EN 310 Ageing in accordance with description in Table 10	$ \begin{array}{c} lowest\ individual\\ strength\\ f\ \geq 22N/mm^2 \end{array} $	3 (length) + 2 (width)	One board for every 200 boards produced
5	Water absorption after 4 days	see Table 10	≤ 2 weight % after 4 days; if sample fails, the 2 nd sample must be tested.	1 (2 in the case of fail)	One board for every 200 boards produced
6	Organic material content (resin binder)	Glowing at 650° for at least 60 min. Remark: time depends on the type of oven	12,0 ± 1,5 weight %	40 [a]	One board for every 200 boards produced
7	Reaction to fire [b]	EN 13162 loss on ignition Table B.2	Table 1 EN 13501-1	Three specimens [b]	every two years
			out by the sub-supplier a	nd the docum	entation is
main	•	rd manufacturer as j			
8	Dowel-type fasten structures	ers for timber	EN 14592, Annex ZA.2 Procedure for attestation of	of conformity	Every 3 years
9	EPDM foam gaske	et	Manufacturers declaration	Every 3 years	
	=	four different boards			
			be considered on the basis of E	OTA Technical	Report TR 021
The control plan has been deposited at the ETA-Danmark A/S					

¹ The control plan has been deposited at the ETA-Danmark A/S

Annex 4-2

Table 17- Control plan for the manufacturer for the product 'Natural Xtreme'

Nr	Subject/type of	Test or control method	Criteria, if any	Minimum number of	Minimum frequency
	control		-	samples	of control
(1)	(2)	(3)	(4)	(5)	(6)
			control (FPC) 'Natural Xt n accordance with a presc] 1
1	Board thickness	EN 325	8 ± 0,5 mm 10 ± 0,5 mm	40 [a]	One board for every 200 boards produced
2	Density	EN 323	1200 ±100 kg/m ³	40 [a]	One board for every 200 boards produced
3	Bending strength dry parallel and perpendicular to the production direction	EN 310	$f_{05} \ge 34,5 \text{ N/mm}^2$	20 (length) + 20 (width)	One board for every 200 boards produced
4	Bending strength after ageing parallel and perpendicular to the production direction	EN 310 Ageing in accordance with description in Table 10	lowest individual strength $f \geq 28 \text{ N/mm}^2$	3 (length) + 2 (width)	One board for every 200 boards produced
5	Water absorption after 4 days	see Table 10	≤ 2 weight % after 4 days; if sample fails, the 2 nd sample must be tested.	1 (2 in the case of fail)	One board for every 200 boards produced
6	Organic material content (resin binder)	Glowing at 650° for at least 60 min. Remark: time depends on the type of oven	14,5 ± 0,5 weight %	40 [a]	One board for every 200 boards produced
7	Reaction to fire [b]	EN 13162 loss on ignition Table B.2	Table 1 EN 13501-1	Three specimens [b]	every two years
			out by the sub-supplier a	and the docum	entation is
main 8	Dowel-type fasten structures	d manufacturer as j ers for timber	part of his FPC EN 14592, Annex ZA.2 Procedure for attestation	of conformity	Every 3 years
9	EPDM foam gaske	et	Manufacturers declaration	Every 3 years	
[a] amo	ount of samples from	four different boards	ı		
			be considered on the basis of I	EOTA Technical	Report TR 021
The	control plan has been de	eposited at the ETA-Dann	nark A/S		

Annex 5

Table 18- Special methods of control and testing used for the evaluation

	rength after ageing					
	Ageing of the 5 test pieces in (tab) water from 70° C (with surface tension changing additives :					
	for instance 0,5 ml Triton per litre) for 30 minutes.					
	Determination of the bending strength in accordance with EN-310 within 20 minutes after the					
	ageing period in a test room with an air temperature between 17 and 23° C.					
Water abso						
	The water absorption by the edges must be determined on test pieces W1 in the size 50*400					
	mm.					
	The dimensions and the weight of the test pieces are determined.					
	The sample is wrapped with aluminum foil with the exception of one 50 mm edge.					
	The test pieces are vertically placed in a bucket with tab water, with the 50 mm size without					
	aluminum foil horizontally in the water. The edge must be 1 to 5 mm in the water (without					
	additives).					
	Test conditions:					
	Water temperature 17 - 23° C					
	Room temperature 17 - 23° C					
	test piece W1 ———————————————————————————————————					

Annex 6

Table 19 -Control plan for the notified body; corner stones

Nr	Nr Subject/type of control		Criteria, if any	Minimum number of samples	Minimum frequency of control		
(1)	(1) (2)		(4)	(5)	(6)		
	Initial type-testing of the product (ITT)						
1	Testing to determine the product performance has been carried out under the responsibility of the TAB as part of the procedure to issue the ETA						
1	Initial inspection of factory and factory production control (FPC)						
1	See table 16 and 17						
Continuous	Continuous surveillance, judgment and assessment of factory production control (FPC)						
1	See table16 and 17						

Table 20 –Impact resistance: Definition of use categories

Use category Description			
A zone readily accessible at ground level to the public and vulnerable to hat impacts but not subjected to abnormally rough use.			
II	A zone liable to impacts from thrown or kicked objects, but in public locations where the height of the kit will limit the size of the impact; or at lower levels where access to the building is primarily to those with some incentive to exercise care.		
III	A zone not likely to be damaged by normal impacts caused by people or by thrown or kicked objects.		
IV A zone out of reach from ground level			

The hard body impact with steel ball represents the action from heavy, non-deformable objects, which accidentally hit the kit.